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Cold-Start Problems in CF

New users
— making use of meta-features: e.g., regression prior
— interview process: the set of items relatively stable, user-centric

Static sets of interview questions
Adaptive interview questions
Binary vs. sequential search

New items
Making use of meta-features: e.g., regression prior
The set of items changes rapidly: Yahoo!’s Today Module
— Little historical data per user
Computational advertising: placing sets of ads on web pages
System-centric: maximizing click-through rate (CTR)

Several angles to consider the trade-off/problem formulation
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Yahoo!’s Today Module

3/13/11 8:04 PMYahoo!

Page 1 of 2http://www.yahoo.com/

 Help Japan Donate to Japan earthquake and tsunami relief efforts 15,833 people donated $792,322 so far

Radiation levels spike, underscoring the
risks posed by two stricken nuclear
reactors. 180,000 people evacuate

Nuclear emergencies

Neighbors monitor winds

Footage of the blast

More: News  Popular  Buzz

TODAY - March 13, 2011

Japan races to avert multiple meltdowns

 March Madness Coverage

Gadhafi's forces drive Libyan rebels from key oil town

L.A.-bound pilots lock down cockpit over praying passengers

Official: Riders contradict driver's story in fatal NYC crash

Pakistani intelligence: U.S. missiles kill seven militants

NFL safety Zbikowski wins second professional boxing match

In Afghanistan, women boxers eye Olympic knock-out

Atlanta weather | Cold front, rain on the way - AJC

Dueling SPLOST Rallies Held In Cobb - WSB 2

Henry County Beefs Up Meeting Security - WXIA 11

· NBA · NCAAB · NFL · Soccer · NHL · NASCAR · MLB

updated 08:03 pm

MARKETPLACE

Advertise your products to one of the world’s largest and most
engaged web audiences. Sign up today.

1 - 4 of 24  

Japan death toll
may top 10,000

Japan races to
avert meltdowns

NCAA teams
announced

Video captures
tsunami's impact

NEWS WORLD LOCAL FINANCE

Complete bracket Print the PDF

Colorado headlines list of biggest tournament snubs

Play Tourney Pick'em
Fill  out an NCAA tournament bracket, compete against
friends, and try to win $1 million. More

Markets:  Dow: 12,044.00 0.49% Nasdaq: 2,715.60 0.54%

Get QuotesEnter stock symbol

Newegg.com Mancave Sweepstakes

Over $26,000 in Prizes: HDTVs and More

Enter Now to Win the Ultimate Mancave

YAHOO! SITES Edit

More Yahoo! Sites

Mail

Autos

Dating

Finance (Dow Jones )

Games

Health

Horoscopes

Jobs

Messenger

Movies

omg!

Real Estate

Shine

Shopping

Sports

Travel

Updates

Weather (71°F)

MY FAVORITES Edit

Facebook

Twitter

Add Favorite

FEATURED PARTNERS

Netflix

1. Amanda Seyfried

2. Donald Trump

3. Gary Oldman

4. What time is it?

5. Mars Needs Moms

6. Orlando Magic

7. NFL labor talks

8. Aftershocks

9. Interest rates

10. Tablet computers

TRENDING NOW

VIDEO PICKS

Puppy takes her box for a spin

Go to Video

Determined little

ballerina refuses

to give up

Kitty shows

toddler how to

play ball

MobileYahoo!'s new Finance iPad app

MarketDash iPad app from Yahoo!
Finance gives you quick, easy access to
your investment portfolios and watch lists.

Download the iPad App Now

AdChoices

Ad Feedback

My Yahoo! Sign In  New here? Sign Up  Have something to share? Page OptionsGet Yahoo! on your phone

Web Images Video Local Shopping
Yahoo!

Web Search

More
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Contextual Multi-Armed Bandit Problem

To draw users’ attention, rank article in the pool, and highlight the
most attractive in the story position (F1)
Each user visits and their click probabilities on articles iid
Articles in the pool ⇔ arms
The payoff is one if F1 is clicked, otherwise zero
— the expected payoff is the click through rate (CTR)
User/article features help to select the article
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Multi-Armed Bandit Problem

Context-free bandit problem
Proposed by H. Robbins (1952)
— together with T.L. Lai proved logrithmic low-bound for expected
regret (1985)
Similar to a slot machine (one-armed bandit) but with K levers (arms)
When pulled, each lever provides a reward drawn from a distribution
specific to that lever
Initially, we know little of the levers
— through repeated trials, we can eventually focus on the most
rewarding lever
Trade-off: Exploitation vs. exploration
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Multi-Armed Bandit Problem

A = {1, 2, . . . ,K} the set of arms
Multi-armed bandit algorithm A proceeds in discrete trials
t = 1, 2, . . . . In trial t:

1 Associated with each arm a is a real-valued payoff/reward rt,a
— [rt,1, . . . , rt,K ] ∼ D

2 Based on observed payoffs in previous trials, A chooses at ∈ A and
receive payoff rt,at

3 The new information (at , rt,at ) is incorporated into A’s arm-selection
strategy
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Some Definitions

Total T-trial payoff of algorithm/strategy A

GA(T ) ≡ ED

{ T∑
t=1

rt,at

}

Let µ∗ = max1≤a≤K µa, µa ≡ EDra.
T-trial regret of A,

RA(T ) ≡ Tµ∗ − GA(T )

Per-trial payoff gA(T ) ≡ GA(T )/T and per-trial regret
ρA(T ) ≡ RA(T )/T
Zero-regret algorithm

Pr(ρA(T )→ 0)→ 1, T →∞
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Greedy Algorithm

Suppose at trial t, arm a has been chosen ka times with payoff
r (1), . . . , r (ka), use

Qt(a) =
1
ka

(r (1) + · · ·+ r (ka))

to estimate µa, the mean of ra
Choose at at trial t if

Qt(at) = max
1≤a≤K

Qt(a)
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ε-Greedy Algorithm

Behave greedily most of the time, but once in a while, say with
probability ε, randomly select one arm a
— with probability (1− ε) choose the greedy arm
— with probability ε, randomly select one arm a
Balance/trade-off between exploration and exploitation
— Exploit the past experience to select the arm that appears to be
the best
— Explore by choosing seemingly sub-optimal arms to gather more
information about the arms
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Upper Confidence Bound (UBC) Algorithm

ε-greedy algorithm ⇒ unguided exploration
Estimate Qt(a) as well as a confidence interval, with high probability

|Qt(a)− µa| ≤ ct,a

Choose at at trial t if

at = argmax1≤a≤K (Qt(a) + ct,a)
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Contextual Bandit Problem

A = {1, 2, . . . ,K} the set of arms
Multi-armed bandit algorithm A interact with the world in discrete
trials t = 1, 2, . . . . In trial t:

1 The world chooses a feature vector xt . Associated with each arm a is a
real-valued payoff/reward rt,a
— [xt , rt,1, . . . , rt,K ] ∼ D

2 Based on observed payoffs in previous trials ht−1 and xt , A chooses
at ∈ A and receive payoff rt,at

3 The new information ht = ht−1 ∪ (xt , at , rt,at ) is incorporated into A’s
arm-selection strategy
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Contexts

For Yahoo! Today Module: news article recommendation
Users and articles can be represented by features
— users: demographic features, historical activities
— articles: BOW, category labels
Contextual Bandit: bandits with co-variates, side information etc.
Many algorithms proposed in the past
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LinUBC Algorithm

Linearity assumption (Auer 2002, JMLR):

E(ra|xa) = xT
a θa, a = 1, . . . ,K , xt = [xt,1, . . . , xt,K ]

For a, let m be the number of times arm a was selected before trial t.
Collect data [Da, ba] ∈ Rm×(d+1), where Da the m d-dimensional
feature vectors, and ba the corresponding payoffs
Linear/ridge regression problem to estimate θa,

θ̂a = (DT
a Da + Id)−1DT

a ba
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LinUBC Algorithm

Confidence Bound: with probability > 1− δ,

|xT
t,aθ̂a − E(rt,a|xt,a)| ≤ α

(
xT

t,aA−1
a xt,a

)1/2

here Aa = DT
a Da + Id , α = 1 + (log(2/δ)/2)1/2

LinUBC:

at = argmax1≤a≤K

(
xT

t,aθ̂a + α
(
xT

t,aA−1
a xt,a

)1/2
)
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LinUBC

Algorithm 1 LinUCB with disjoint linear models.
0: Inputs: α ∈ R+

1: for t = 1, 2, 3, . . . , T do
2: Observe features of all arms a ∈ At: xt,a ∈ Rd

3: for all a ∈ At do
4: if a is new then
5: Aa ← Id (d-dimensional identity matrix)
6: ba ← 0d×1 (d-dimensional zero vector)
7: end if
8: θ̂θθa ← A−1

a ba

9: pt,a ← θ̂θθ
#
a xt,a + α

q
x#

t,aA
−1
a xt,a

10: end for
11: Choose arm at = arg maxa∈At pt,a with ties broken arbi-

trarily, and observe a real-valued payoff rt

12: Aat ← Aat + xt,atx
#
t,at

13: bat ← bat + rtxt,at

14: end for

Finally, we note that, under the assumption that input features
xt,a were drawn i.i.d. from a normal distribution (in addition to the
modeling assumption in Eq. (2)), Pavlidis et al. [22] came up with
a similar algorithm that uses a least-squares solution θ̃θθa instead of
our ridge-regression solution (θ̂θθa in Eq. (3)) to compute the UCB.
However, our approach (and theoretical analysis) is more general
and remains valid even when input features are nonstationary. More
importantly, we will discuss in the next section how to extend the
basic Algorithm 1 to a much more interesting case not covered by
Pavlidis et al.

3.2 LinUCB with Hybrid Linear Models
Algorithm 1 (or the similar algorithm in [22]) computes the in-

verse of the matrix, D#
a Da + Id (or D#

a Da), where Da is again
the design matrix with rows corresponding to features in the train-
ing data. These matrices of all arms have fixed dimension d × d,
and can be updated efficiently and incrementally. Moreover, their
inverses can be computed easily as the parameters in Algorithm 1
are disjoint: the solution θ̂θθa in Eq. (3) is not affected by training
data of other arms, and so can be computed separately. We now
consider the more interesting case with hybrid models.

In many applications including ours, it is helpful to use features
that are shared by all arms, in addition to the arm-specific ones. For
example, in news article recommendation, a user may prefer only
articles about politics for which this provides a mechanism. Hence,
it is helpful to have features that have both shared and non-shared
components. Formally, we adopt the following hybrid model by
adding another linear term to the right-hand side of Eq. (2):

E[rt,a|xt,a] = z#
t,aβββ

∗ + x#
t,aθθθ

∗
a, (6)

where zt,a ∈ Rk is the feature of the current user/article combina-
tion, and βββ∗ is an unknown coefficient vector common to all arms.
This model is hybrid in the sense that some of the coefficients βββ∗

are shared by all arms, while others θθθ∗
a are not.

For hybrid models, we can no longer use Algorithm 1 as the
confidence intervals of various arms are not independent due to the
shared features. Fortunately, there is an efficient way to compute
an UCB along the same line of reasoning as in the previous sec-
tion. The derivation relies heavily on block matrix inversion tech-
niques. Due to space limitation, we only give the pseudocode in
Algorithm 2 (where lines 5 and 12 compute the ridge-regression
solution of the coefficients, and line 13 computes the confidence
interval), and leave detailed derivations to a full paper. Here, we

Algorithm 2 LinUCB with hybrid linear models.
0: Inputs: α ∈ R+

1: A0 ← Ik (k-dimensional identity matrix)
2: b0 ← 0k (k-dimensional zero vector)
3: for t = 1, 2, 3, . . . , T do
4: Observe features of all arms a ∈ At: (zt,a,xt,a) ∈ Rk+d

5: β̂ββ ← A−1
0 b0

6: for all a ∈ At do
7: if a is new then
8: Aa ← Id (d-dimensional identity matrix)
9: Ba ← 0d×k (d-by-k zero matrix)

10: ba ← 0d×1 (d-dimensional zero vector)
11: end if
12: θ̂θθa ← A−1

a

“
ba −Baβ̂ββ

”

13: st,a ← z#
t,aA

−1
0 zt,a − 2z#

t,aA
−1
0 B#

a A−1
a xt,a +

x#
t,aA

−1
a xt,a + x#

t,aA
−1
a BaA

−1
0 B#

a A−1
a xt,a

14: pt,a ← z#
t,aβ̂ββ + x#

t,aθ̂θθa + α
√

st,a

15: end for
16: Choose arm at = arg maxa∈At pt,a with ties broken arbi-

trarily, and observe a real-valued payoff rt

17: A0 ← A0 + B#
atA

−1
at Bat

18: b0 ← b0 + B#
atA

−1
at bat

19: Aat ← Aat + xt,atx
#
t,at

20: Bat ← Bat + xt,atz
#
t,at

21: bat ← bat + rtxt,at

22: A0 ← A0 + zt,atz
#
t,at − B#

atA
−1
at Bat

23: b0 ← b0 + rtzt,at − B#
atA

−1
at bat

24: end for

only point out the important fact that the algorithm is computation-
ally efficient since the building blocks in the algorithm (A0, b0,
Aa, Ba, and ba) all have fixed dimensions and can be updated
incrementally. Furthermore, quantities associated with arms not
existing in At no longer get involved in the computation. Finally,
we can also compute and cache the inverses (A−1

0 and A−1
a ) pe-

riodically instead of at the end of each trial to reduce the per-trial
computational complexity to O(d2 + k2).

4. EVALUATION METHODOLOGY
Compared to machine learning in the more standard supervised

setting, evaluation of methods in a contextual bandit setting is frus-
tratingly difficult. Our goal here is to measure the performance of a
bandit algorithm π, that is, a rule for selecting an arm at each time
step based on the preceding interactions (such as the algorithms de-
scribed above). Because of the interactive nature of the problem, it
would seem that the only way to do this is to actually run the algo-
rithm on “live” data. However, in practice, this approach is likely to
be infeasible due to the serious logistical challenges that it presents.
Rather, we may only have offline data available that was collected
at a previous time using an entirely different logging policy. Be-
cause payoffs are only observed for the arms chosen by the logging
policy, which are likely to often differ from those chosen by the
algorithm π being evaluated, it is not at all clear how to evaluate
π based only on such logged data. This evaluation problem may
be viewed as a special case of the so-called “off-policy evaluation
problem” in reinforcement learning (see, c.f., [23]).

One solution is to build a simulator to model the bandit process
from the logged data, and then evaluate π with the simulator. How-
ever, the modeling step will introduce bias in the simulator and so
make it hard to justify the reliability of this simulator-based evalu-
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LinUBC with Hybrid Linear Models

LinUBC: training of different arms are separate
xt = [xt,1, . . . , xt,K ] is supposed to capture the context which involves
both users and article
— set aside part of the paramters that are common to all arms

E(ra|xa) = zT
a β + xT

a θa

In the case of two arms, the regression problem is

[
Z1 D1 0
Z2 0 D2

] β
θ1
θ2

 ≈ [ b1
b2

]
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Experiments

Data collection: random bucket in May 2009
— view-based randomization
— F1 article used
— 4.7M events on May 1 (training/tuning)
— 36M events on May 3-9 for testing
Each event:
— the random article shown to the user at F1
— user/article information
— user click (yes/no) at F1
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Features

User features: 1193 categorical features
— demographic info: gender; age
— geographic info: 200 metro and US states
— behavioral categories: consumption history within Yahoo!
properties
Article features: 83 categorical features
— URL categories
— Editor topic categories
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Features: Dimension Reduction

Fit a bilinear logistic regression model to CTR: φT
u Wφa

With the weight matrix W = CTD, Cφu and Dφa can be considered
as the k-dimensional projected features
Quantizing the k-dimensional features using K -means
— each user and article is represented by a five dimensional vector,
degree of membership to each of the five clusters
— add 1 to each feature vector
— zt,a outer-product of the user and article features, and xt,a article
features alone
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Offline Evaluation

Logged data available for a different policy/algorithm
— off-policy evaluation in reinforcement learning
Offline data: S, a stream of events where arms are selected uniformly
at random

this undesired situation, A has to explore the world by ac-
tually choosing seemingly suboptimal arms so as to gather
more information about them (c.f., step 3 in the bandit pro-
cess defined in the previous subsection). Exploration can in-
crease short-term regret since some suboptimal arms may be
chosen. However, obtaining information about the arms’ av-
erage payoffs (i.e., exploration) can refine A’s estimate of the
arms’ payoffs and in turn reduce long-term regret. Clearly,
neither a purely exploring nor a purely exploiting algorithm
works best in general, and a good tradeoff is needed.

There are roughly two classes of bandit algorithms. The
first class of algorithms attempt to minimize the regret as
the number of steps increases. Formally, such algorithms
A ensure the quantity RA(T )/T vanishes over time as T
grows. While low-regret algorithms have been extensively
studied for the context-free K-armed bandit problem [7],
the more general contextual bandit problem has remained
challenging. Another class of algorithms are based on Bayes
rule, such as Gittins index methods [8]. Such Bayesian ap-
proaches may have competitive performance with appropri-
ate prior distributions, but are often computationally pro-
hibitive without coupling with approximation [2].

The Appendix describes a few representative low-regret
algorithms used in our experiments, but it should be noted
that our method is algorithm independent, and so may be
applied to evaluate Bayesian algorithms as well.

3. UNBIASED OFFLINE EVALUATION
Compared to machine learning in the more standard su-

pervised learning setting, evaluation of methods in a contex-
tual bandit setting is frustratingly difficult. Our goal here
is to measure the performance of a bandit algorithm A, that
is, a rule for selecting an arm at each time step based on
the preceding interactions and current context (such as the
algorithms described above). Because of the interactive na-
ture of the problem, it would seem that the only way to do
this unbiasedly is to actually run the algorithm online on
“live” data. However, in practice, this approach is likely to
be infeasible due to the serious logistical challenges that it
presents. Rather, we may only have offline data available
that was collected at a previous time using an entirely differ-
ent logging policy. Because payoffs are only observed for the
arms chosen by the logging policy, which are likely to differ
from those chosen by the algorithm A being evaluated, it is
not at all clear how to evaluate A based only on such logged
data. This evaluation problem may be viewed as a special
case of the so-called “off-policy policy evaluation problem”
in the reinforcement learning literature [17].

One solution is to build a simulator to model the bandit
process from the logged data, and then evaluate A with the
simulator. Although this approach is straightforward, the
modeling step is often very expensive and difficult, and more
importantly, it often introduces modeling bias to the sim-
ulator, making it hard to justify reliability of the obtained
evaluation results. In contrast, we propose an approach that
is unbiased, grounded on data, and simple to implement.

In this section, we describe a sound technique for carrying
out such an evaluation, assuming that the individual events
are i.i.d., and that the logging policy chose each arm at each
time step uniformly at random. Although we omit the de-
tails, this latter assumption can be weakened considerably so
that any randomized logging policy is allowed and the algo-

Algorithm 1 Policy_Evaluator (with infinite data stream).

0: Inputs: T > 0; bandit algorithm A; stream of events S
1: h0 ← ∅ {An initially empty history}
2: ĜA ← 0 {An initially zero total payoff}
3: for t = 1, 2, 3, . . . , T do
4: repeat
5: Get next event (x, a, ra) from S
6: until A(ht−1,x) = a
7: ht ← concatenate(ht−1, (x, a, ra))
8: ĜA ← ĜA + ra

9: end for
10: Output: ĜA/T

rithm can be modified accordingly using rejection sampling,
but at the cost of decreased data efficiency.

More precisely, we suppose that there is some unknown
distribution D from which tuples are drawn i.i.d. of the form
(x, r1, . . . , rK), each consisting of observed context and un-
observed payoffs for all arms. We also posit access to a long
sequence of logged events resulting from the interaction of
the logging policy with the world. Each such event consists
of the context vector x, a selected arm a and the resulting
observed payoff ra. Crucially, only the payoff ra is observed
for the single arm a that was chosen uniformly at random.

Our goal is to use this data to evaluate a bandit algorithm
A. Formally, A is a (possibly randomized) mapping for se-
lecting the arm at at time t based on the history ht−1 of
t − 1 preceding events together with the current context.

It should be noted that this section focuses on contextual
bandit problems with constant arm sets of size K. While
this assumption leads to easier exposition and analysis, it
may not be satisfied in practice. For example, in the news
article recommendation problem studied in Section 4, the set
of arms is not fixed: new arms may become available while
old arms may be dismissed. Consequently, the events are
independent but drawn from non-identical distributions. We
do not investigate this setting formally although it is possible
to generalize our setting in Section 2 to this variable arm set
case. Empirically, we find the evaluator is very stable.

3.1 An Unbiased Offline Evaluator
In this subsection, for simplicity of exposition, we take this

sequence of logged events to be an infinitely long stream.
But we also give explicit bounds on the actual finite number
of events required by our evaluation method. A variation
for finite data streams is studied in the next subsection.

The proposed policy evaluator is shown in Algorithm 1.
The method takes as input a bandit algorithm A and a de-
sired number of “valid” events T on which to base the eval-
uation. We then step through the stream of logged events
one by one. If, given the current history ht−1, it happens
that the policy A chooses the same arm a as the one that
was selected by the logging policy, then the event is retained
(that is, added to the history), and the total payoff ĜA up-
dated. Otherwise, if the policy A selects a different arm from
the one that was taken by the logging policy, then the event
is entirely ignored, and the algorithm proceeds to the next
event without any change in its state.

Note that, because the logging policy chooses each arm
uniformly at random, each event is retained by this algo-
rithm with probability exactly 1/K, independent of every-
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