
university-logo

CSE 8803RS: Recommendation Systems
Lecture 2: Memory-Based Collaborative Filtering

Hongyuan Zha

School of Computational Science & Engineering
College of Computing

Georgia Institute of Technology

Hongyuan Zha (Georgia Tech) CSE 8803RS: Recommendation Systems 1 / 16

university-logo

Basic Problem Formulation

Rating based paradigm
Users: u, v ∈ U ; Items: i , j ∈ I
Ratings: rui indicating degree of preference of user u for item j ,
higher values ⇒ stronger preference
Problem. Ratings are not defined over all U × I, need to predict
those missing ratings
Incomplete rating matrix

Casablanc God Father Harry Potter Lion King
David 5 4 2 ?
John 3 2 ? 5
Jenny 5 2 5 ?

Hongyuan Zha (Georgia Tech) CSE 8803RS: Recommendation Systems 2 / 16

university-logo

The Duality Between Users and Items

Users and items are dual of each other. However, your viewpoint can
either be
— User centric: for a given user with past purchasing and/or rating
history, how to recommend new items to her?
— Item centric: for a given item that was bought and/or rated by
some users before, to which other users should we recommend it?
CF has been exclusively focused on the user-centric viewpoint. Thus
the heavy emphasis on item-based methods
Asymmetry still exists in real-world examples
— similarity of items more stable than similarity of users

Hongyuan Zha (Georgia Tech) CSE 8803RS: Recommendation Systems 3 / 16

university-logo

In the User Centric World

Problem. For a given user with past purchasing and/or rating history,
how to recommend new items to her?

User-based methods
— For a given user, find other similar users, and recommend items
those similar users liked in the past
Scaling issues: complexity O(MN), where M # of users, and N # of
items; in practice more like O(M)

Some remedies:
— sampling users
— clustering users
— offline computation of user similarity: frequent change of user
activities

Hongyuan Zha (Georgia Tech) CSE 8803RS: Recommendation Systems 4 / 16

university-logo

User-based Methods

The notion of an active user a, and the prediction for rai

For any user u, let Iu = {i | rui 6=?}
Mean user rating:

r̄u =
1
|Iu|
∑
i∈Iu

rui

Prediction for rai

r̂ai = r̄a + κ
∑

u
sim(a, u)(rui − r̄u)

where u is over the set of neighbors, κ normalization factor

Hongyuan Zha (Georgia Tech) CSE 8803RS: Recommendation Systems 5 / 16

university-logo

Some Subtle Points

As is written the set of neighbors is fixed independent of the item to
be predicted
The best k neighbors may not even have an opinion about the
particular item
Dynamically select k best neighbors who have rated the item

Hongyuan Zha (Georgia Tech) CSE 8803RS: Recommendation Systems 6 / 16

university-logo

Similarity

Correlation:

sim(a, u) =

∑
i (rai − r̄a)(rui − r̄u)√∑

i (rai − r̄a)2
√∑

i (rui − r̄u)2

where the summation is over i ∈ Ia ∩ Iu

Hongyuan Zha (Georgia Tech) CSE 8803RS: Recommendation Systems 7 / 16

university-logo

Extensions

Default voting: assume default values, and expand the summation
over i ∈ Ia ∪ Iu or beyond
— assume some number of items that both would like/dislike
Inverse user frequency: down-weight items that appear in many Iu
— analogous to inverse document frequency in IR
— many variations on this: log(M/Mi),Mi # of Iu that item i
appeared
Case amplification: making sim(a, u) more extreme

Hongyuan Zha (Georgia Tech) CSE 8803RS: Recommendation Systems 8 / 16

university-logo

In the User Centric World

Problem. For a given user with past purchasing and/or rating history,
how to recommend new items to her?

Item-based methods
— For a given user, find items that are similar to those that the user
has purchased or rated, then combines those similar items into a
recommendation list
Offline computation of item similarity: complexity O(MN2). However,
most of the entries will be zero ⇒ fast method
Online look-up of similar items does not depend on M or N
— but rather how many the user purchased/rated in the past
Works for user with limited data, even just one item purchase/rating

Hongyuan Zha (Georgia Tech) CSE 8803RS: Recommendation Systems 9 / 16

university-logo

Fast Method for Item Similarity

Problem. Computing Item Similarity table offline: complexity O(MN)
— there might be items bough by most users, but each user only bought a
small number of items

iterative algorithm provides a better approach by
calculating the similarity between a single prod-
uct and all related products:

For each item in product catalog, I1
For each customer C who purchased I1

For each item I2 purchased by
customer C
Record that a customer purchased I1
and I2

For each item I2
Compute the similarity between I1 and I2

It’s possible to compute the similarity between two
items in various ways, but a common method is to
use the cosine measure we described earlier, in which
each vector corresponds to an item rather than a
customer, and the vector’s M dimensions correspond
to customers who have purchased that item.

This offline computation of the similar-items
table is extremely time intensive, with O(N2M) as
worst case. In practice, however, it’s closer to
O(NM), as most customers have very few purchas-
es. Sampling customers who purchase best-selling
titles reduces runtime even further, with little
reduction in quality.

Given a similar-items table, the algorithm finds
items similar to each of the user’s purchases and
ratings, aggregates those items, and then recom-
mends the most popular or correlated items. This
computation is very quick, depending only on the
number of items the user purchased or rated.

Scalability: A Comparison
Amazon.com has more than 29 million customers
and several million catalog items. Other major
retailers have comparably large data sources.
While all this data offers opportunity, it’s also a
curse, breaking the backs of algorithms designed
for data sets three orders of magnitude smaller.
Almost all existing algorithms were evaluated over
small data sets. For example, the MovieLens data
set4 contains 35,000 customers and 3,000 items,
and the EachMovie data set3 contains 4,000 cus-
tomers and 1,600 items.

For very large data sets, a scalable recommen-
dation algorithm must perform the most expensive
calculations offline. As a brief comparison shows,
existing methods fall short:

• Traditional collaborative filtering does little or
no offline computation, and its online compu-
tation scales with the number of customers and
catalog items. The algorithm is impractical on

large data sets, unless it uses dimensionality
reduction, sampling, or partitioning — all of
which reduce recommendation quality.

• Cluster models can perform much of the com-
putation offline, but recommendation quality
is relatively poor. To improve it, it’s possible to
increase the number of segments, but this
makes the online user–segment classification
expensive.

• Search-based models build keyword, category,
and author indexes offline, but fail to provide
recommendations with interesting, targeted
titles. They also scale poorly for customers with
numerous purchases and ratings.

The key to item-to-item collaborative filtering’s
scalability and performance is that it creates the
expensive similar-items table offline. The algo-
rithm’s online component — looking up similar
items for the user’s purchases and ratings — scales
independently of the catalog size or the total num-
ber of customers; it is dependent only on how
many titles the user has purchased or rated. Thus,
the algorithm is fast even for extremely large data
sets. Because the algorithm recommends highly
correlated similar items, recommendation quality
is excellent.10 Unlike traditional collaborative fil-
tering, the algorithm also performs well with lim-
ited user data, producing high-quality recommen-
dations based on as few as two or three items.

Conclusion
Recommendation algorithms provide an effective
form of targeted marketing by creating a person-
alized shopping experience for each customer. For
large retailers like Amazon.com, a good recom-
mendation algorithm is scalable over very large
customer bases and product catalogs, requires only
subsecond processing time to generate online rec-
ommendations, is able to react immediately to
changes in a user’s data, and makes compelling
recommendations for all users regardless of the
number of purchases and ratings. Unlike other
algorithms, item-to-item collaborative filtering is
able to meet this challenge.

In the future, we expect the retail industry to
more broadly apply recommendation algorithms for
targeted marketing, both online and offline. While
e-commerce businesses have the easiest vehicles for
personalization, the technology’s increased conver-
sion rates as compared with traditional broad-scale
approaches will also make it compelling to offline
retailers for use in postal mailings, coupons, and
other forms of customer communication.

IEEE INTERNET COMPUTING http://computer.org/internet/ JANUARY • FEBRUARY 2003 79

Amazon.com Recommendations

Hongyuan Zha (Georgia Tech) CSE 8803RS: Recommendation Systems 10 / 16

university-logo

Evaluation Metrics

rui vs. r̂ui , and T is the test set

Root mean squared error (RMSE): 1
|T |

∑
(u,i)∈T

(rui − r̂ui)
2

1/2

Mean absolute error (MAE):

1
|T |

∑
(u,i)∈T

|rui − r̂ui |

Metrics based on binary classification

Hongyuan Zha (Georgia Tech) CSE 8803RS: Recommendation Systems 11 / 16

university-logo

Experiments on MovieLens Data

43,000 users and 3,500+ movies
— users with 20+ ratings
— used 100,000 ratings with a 943× 1682 user-item matrix
Public data: 1 million ratings for 3,900 movies by 6,040 users. About
4% of the ratings are observed. The ratings are integers ranging from
1 (bad) to 5 (good).

Hongyuan Zha (Georgia Tech) CSE 8803RS: Recommendation Systems 12 / 16

university-logo

Compare Similarity

Pure cosine for rating vectors
Correlation
Adjusted cosine

4.2.1 Experimental Procedure

Experimental steps.

Benchmark user-based system.

Experimental platform.

4.3 Experimental Results

4.3.1 Effect of Similarity Algorithms

Relative performance of different similarity

measures

0.66

0.68

0.7

0.72

0.74

0.76

0.78

0.8

0.82

0.84

0.86

Adjusted cosine Pure cosine Correlation

M
A

E

4.3.2 Sensitivity of Training/Test Ratio

4.3.3 Experiments with neighborhood size

4.3.4 Quality Experiments

Hongyuan Zha (Georgia Tech) CSE 8803RS: Recommendation Systems 13 / 16

university-logo

User Neighborhood Size

Sensitivity of the parameter x

0.73

0.75

0.77

0.79

0.81

0.83

0.85

0.87

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Train/test ratio, x

M
A

E

itm-itm itm-reg

Sensitivity of the Neighborhood Size

0.736

0.741

0.746

0.751

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0
0

1
2
5

1
5
0

1
7
5

2
0
0

No. of Neighbors

M
A

E

itm-itm itm-reg

4.3.5 Performance Results

4.4 Sensitivity of the Model Size

Sensitivity of the model size

(at selected train/test ratio)

0.72

0.74

0.76

0.78

0.8

0.82

0.84

25 50 75 100 125 150 175 200 item-item

Model size

M
A

E

x=0.3 x=0.5 x=0.8

Hongyuan Zha (Georgia Tech) CSE 8803RS: Recommendation Systems 14 / 16

university-logo

Item Neighborhood Size

of items to keep in item similarity table

Sensitivity of the parameter x

0.73

0.75

0.77

0.79

0.81

0.83

0.85

0.87

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Train/test ratio, x

M
A

E

itm-itm itm-reg

Sensitivity of the Neighborhood Size

0.736

0.741

0.746

0.751

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0
0

1
2
5

1
5
0

1
7
5

2
0
0

No. of Neighbors

M
A

E

itm-itm itm-reg

4.3.5 Performance Results

4.4 Sensitivity of the Model Size

Sensitivity of the model size

(at selected train/test ratio)

0.72

0.74

0.76

0.78

0.8

0.82

0.84

25 50 75 100 125 150 175 200 item-item

Model size

M
A

E

x=0.3 x=0.5 x=0.8

Hongyuan Zha (Georgia Tech) CSE 8803RS: Recommendation Systems 15 / 16

university-logo

Item-based vs. User-based

Item-item vs. User-user at Selected

Neighborhood Sizes (at x=0.8)

0.725

0.73

0.735

0.74

0.745

0.75

0.755

10 20 60 90 125 200

No. of neighbors

M
A

E

user-user item-item
item-item-regression nonpers

Item-item vs. User-user at Selected

Density Levels (at No. of Nbr = 30)

0.72

0.74

0.76

0.78

0.8

0.82

0.84

0.2 0.5 0.8 0.9

Train/test ratio, x

M
A

E

user-user item-item
item-item-regression nonpers

4.4.1 Impact of themodel size on run-time and through-
put

4.5 Discussion

5. CONCLUSION

6. ACKNOWLEDGMENTS

Hongyuan Zha (Georgia Tech) CSE 8803RS: Recommendation Systems 16 / 16

