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Basic Problem Formulation

Rating based paradigm
Users: u, v ∈ U ; Items: i , j ∈ I
Ratings: rui indicating degree of preference of user u for item j ,
higher values ⇒ stronger preference
Problem. Ratings are not defined over all U × I, need to predict
those missing ratings
Incomplete rating matrix

Casablanc God Father Harry Potter Lion King
David 5 4 2 ?
John 3 2 ? 5
Jenny 5 2 5 ?
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Structure of the Rating Matrix

Assume we have all the ratings we want, can we say something about the
structure of the rating matrix?

Assume an extreme case: all the users rated all the items in the same
way, i.e., the rows are repetition of one single row vector gT ,

A = egT , e = [1, . . . , 1]T

Prediction is also easy
A is a special case of a rank-one matrix. More generally,

A = fgT , Aui = fugi

Rough interpretation: fi indicates how much user u likes movies, and
gi how much popular movie i is
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Structure of the Rating Matrix

The rank-one model is coarse, in fact, there are many different genres
of movies, say k of them
Rank-k model

Aui = fu1gi1 + · · ·+ fukgik

Rough interpretation:
gi` relative score for movie i in genre `
fu` the affinity of user u for genre `

In matrix format,

A = FGT , F ∈ RM×k ,G ∈ RN×k

A is a rank-k matrix
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Netflix Matrix Example

Ratings: 100M (from 1 to 5)
Movies: 17K
Users: 500K
Potential entries: 8.5B, and 8.4B empty cells
Let k = 40, then 40*(17K+500K)= 21M, 400 times less than 8.5B
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Latent Profiles

Latent variable models
Latent profiles

User latent profiles: Fu = [Fu1, . . . ,Fuk ]
Item latent profiles: Gi = [Gi1, . . . ,Gik ]

Rating Aui = FuGT
i , dot-product of the profiles

Projection viewpoint: users and items projected to k-dimensional
Euclidean space Rk

— Geometry in Rk ⇔ domain-specific relations
— Similar users, similar items etc.

But generally, we only have A ≈ FGT
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Singular Value Decomposition

Given A ∈ RM×N ,M ≥ N,

A = UΣV T

U and V are orthogonal matrices, Σ = diag(σ1, . . . , σn),

σ1 ≥ · · · ≥ σN

A can be written as a linear combination of rank-one matrices

A =
N∑

i=1
σiuivT

i
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SVD: Examples

X =
1 2
3 4
5 6
7 8
Matlab command
[U,S,V] = svd(X)
U =
-0.1525 -0.8226 -0.3945 -0.3800
-0.3499 -0.4214 0.2428 0.8007
-0.5474 -0.0201 0.6979 -0.4614
-0.7448 0.3812 -0.5462 0.0407
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SVD: Examples

S =
14.2691 0
0 0.6268
0 0
0 0

V =
-0.6414 0.7672
-0.7672 -0.6414
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Best Rank-k Approximation

Given A ∈ RM×N ,M ≥ N, let

Ak =
k∑

i=1
σiuivT

i

Then rank(Ak) = k.
Ak is the best rank-k approximation of A,

Ak = argminrank(B)≤k‖A− B‖

If ‖ · ‖ = ‖ · ‖F , the Frobenius norm, then

‖A− B‖2F =
∑
u,i

(Aui − Bui )
2
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Best Rank-k Approximation: Incomplete Data

Rewrite B = FGT , where F ∈ RM×k and G ∈ RN×k , i.e.,

Bui = FuGT
i =

k∑
s=1

FusGis

where Fu and Gi are the u-th row and i-th row of F and G
Let O be the index set with observed Aui , we replace∑

u,i (Aui − Bui )
2 with

∑
(u,i)∈O

(Aui − Bui )
2 =

∑
(u,i)∈O

(Aui −
k∑

s=1
FusGis)2
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Best Rank-k Approximation: Incomplete Data

Optimization problem
Find F ∈ RM×k and G ∈ RN×k so as to minimize

E(F ,G) =
∑

(u,i)∈O
(Aui − FuGT

i )2

Let SO be a binary matrix, � indicates component-wise multiplication

min
F ,G
E(F ,G) = min

F ,G
‖SO � (A− FGT )‖2F
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Regularized SVD

Without controlling the size of the F and G leads to overfitting
Adding regularization terms, the objective function we want to
minimize is

E (F ,G) =
1
2
∑

(u,i)∈O
(Aui −

k∑
s=1

FusGis)2 +
λ̃

2
∑
u,s

U2
us +

λ̃

2
∑
i ,s

V 2
is

λ̃ the regularization parameter
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Gradient Descent

Minimization problem,
min

x∈RD
F (x)

Iterative methods starting with an initial guess x0,

xi+1 = xi − αi∇F (xi )

where ∇F is the gradient of F
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Gradient Descent

Consider a single term from E (F ,G),

Eui (F ,G) =
1
2(Aui −

k∑
s=1

FusGis)2 +
λ

2
∑
u,s

F 2
us +

λ

2
∑
i ,s

G2
is

Take derivative w.r.t. Fus ,

∂Eui (F ,G)

∂Fus
= (

k∑
s=1

FusGis − Aui )Gis + λFus = −RuiGis + λFus
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Iterative Scheme

Notice that if F (x) = F1(x) + · · ·+ Fs(x), then

∇F (x) = ∇F1(x) + · · ·+∇Fs(x)

We also update the iterates one component at a time
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Algorithm: Pseudo-Code

For Each Iteration
For each (u, i) ∈ O

Compute the current estimate Âui = FuGT
i

Compute the current error Rui = Aui − Âui
For each s = 1, ..., k

Fus ← Fus + µ(RuiGis − λFus)
Gis ← Gis + µ(RuiFus − λGis)

Computational cost: O(|O|k)
Storage: O(|O|+ (M + N)K )
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Several Issues

Choice of step length/learning rate µ, and choice of regularization
parameter λ
— Adaptive regularization: λ dependent on iteration number
Choice of K
Multiple local minimizers, choice of initial values
The data {Aui , (u, i) ∈ O} can NOT fit into the existing memory: out
of core implementation
Multiple relations: ordering of the updates
Parallel implementation
— Trade-off between communication latency and convergence rate
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Netflix Matrix Example

k = 96
µ = 0.001
λ = 0.02
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Several Extensions

Baseline predictor for Aui : linear regression on six features
— empirical probabilities of each rating 1− 5 for user u
— mean rating for movie i , after subtracting mean rating of each user
Clipping: After learning of each feature, the predictions is clipped
to range 1-5
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Improved Regularized SVD

New prediction formula

Aui = αu + βi + FuGT
i

Reducing number of parameters: O((M + N)× k)
— Suppose Iu the set of items u rated
— Assumption: Fus =

∑
i∈Iu Gis

— New formula,

Aui = αu + βi +
k∑

s=1
Gis
∑
j∈Iu

Gjs

— Number of parameters: O(N × k)
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Experimental Results

Test RMSE Test RMSE Cumulative
Predictor with BASIC with BASIC test RMSE

and RSVD2

BASIC .9826 .9039 .9826
RSVD .9094 .9018 .9094
RSVD2 .9039 .9039 .9018

KMEANS .9410 .9029 .9010
SVD KNN .9525 .9013 .8988
SVD KRR .9006 .8959 .8933

LM .9506 .8995 .8902
NSVD1 .9312 .8986 .8887
NSVD2 .9590 .9032 .8879

SVD KRR
* NSVD1 — — .8879
SVD KRR
* NSVD2 — — .8877

Table 1: Linear regression results - RMSE on the
test set

.9070 (4.67% improvement over Netflix Cinematch) on quali-
fying.txt, as reported by the Netflix Prize evaluation system.
Linear regression with all predictors from the table gives
RMSE .8877 on the test set and .8911 (6.34% improvement)
on qualifying.txt.

The predictors described in this paper are parts of a so-
lution which scores .8844 on the qualifying dataset – that is
7.04% improvement over Netflix Cinematch. The solution
submitted to the Netflix Prize is the result of merging in
proportion 85/15 two linear regressions trained on different
training-test partitions: one linear regression with 56 pre-
dictors (most of them are different variations of regularized
SVD and postprocessing with KNN) and 63 two-way inter-
actions, and the second one with 16 predictors (subset of the
predictors from the first regression) and 5 two-way interac-
tions. In the first regression the test set is random 15% of
probe.txt, and in the second – 1.5% of probe.txt.

All experiments were done on a PC with 2GHz proces-
sor and 1.2GB RAM. Running times varied from 45min for
SVD KNN to around 20h for RSVD2.

5. SUMMARY
We described a framework for combining predictions and

described methods that combined together give a good pre-
diction for the Netflix Prize dataset.

Possible further improvements of the solution presented:

• apply cross-validation-like solution described in chap-
ter 2 – repeat calculations on different training-test
partitions and merge the results.

• add different efficient predictors to the ensemble. Good
candidates are methods already applied with success
to collaborative filtering: Restricted Boltzmann Ma-
chines [8] and other graphical models [7].
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SVD via Lanczos Bidigonalization

Bidiagonalization: dense matrices,

A = UBV T , B =



α1 β1
α2 β2

. . . . . .
. . . βn−1

αn


The above can be computed using Householder transformations
(Golub-Kahan algorithm)
Then QR algorithm applied to B reduces it to diagonal form
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Golub-Kahan-Lanczos Bidigonalization

From A = UBV T ,

AV = UB, AT U = VBT

Consider the k-columns of both sides,

Avk = αkuk + βk−1vk−1, AT uk = αkvk + βk+1vk+1

or
αkuk = Avk − βk−1vk−1, βk+1vk+1 = AT uk − αkvk

and

αk = ‖Avk − βk−1vk−1‖2, βk+1 = ‖AT uk − αkvk‖2

Start with unit v1 and β0 = 0
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Golub-Kahan-Lanczos Bidigonalization

After k steps,

AVk = UkBk , AT Uk = VkBT
k + βk+1vk+1eT

k

Compute the SVD of Bk = PkSkQT
k , singular values of Sk ,

approximate singular values of A
UkPk and VkQk give approximate singular vectors,

A ≈ (UkPk)Sk(VkQk)T

Computational bottleneck: matrix-vector multiplication with A and
AT

Re-orthogonalization
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Partial SVD by Random Projection/Sampling

A ∈ Rm×n and a given `
1 Draw Ω ∈ Rn×` iid standard Gaussian
2 Form Y = AΩ ∈ Rm×`

3 Compute an orthonormal basis Q of Y
4 Compute B = QT A
5 Compute the SVD of B = UBΣV T

— Through eigen-decomposition of BBT for example
6 Then A ≈ (UUB)ΣV T
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Partial SVD by Random Projection: Error Bounds

Let Y = AΩ and PY orthogonal projection, ` = k + p,

E‖(I − PY )A‖F ≤
(
1 +

k
p − 1

)1/2
‖A− Ak‖F

where Ak best rank-k approximation of A.
p is called oversampling factor
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