CSE 8803RS: Recommendation Systems Lecture 4: Hybrid Models

Hongyuan Zha

School of Computational Science & Engineering College of Computing Georgia Institute of Technology

- User and item effects
 - systematic tendencies for some users to give higher ratings
- Baseline estimate $b_{ui} = \mu + b_u + b_i$
- Example: a critical user Joe on Titanic
 - average overall rating: $\mu = 3.7$
 - Titanic better than average $b_i = .5$
 - Joe critical: $b_u = -.3$
 - $b_{ui} = 3.7 .3 +.5 = 3.9$

・何ト ・ヨト ・ヨト

Better scalability, accuracy and explainability

• Key component: item-item similarity

$$s_{ij} = rac{n_{ij}}{n_{ij} + n}
ho_{ij}$$

- $S^k(i; u)$: k most similar items rated by u
- Adjusting for user and item effects

$$\hat{A}_{ui} = b_{ui} + rac{1}{\sum_{j \in S^k(i;u)} s_{ij}} \sum_{j \in S^k(i;u)} s_{ij} (A_{uj} - b_{uj})$$

Low-rank matrix factorization

• Key ideas: user and item *latent* profiles F_u and G_i ,

,

$$\hat{A}_{ui} = b_{ui} + F_u G_i^T$$

• Low-rank matrix factorization,

$$\min \sum_{(u,i)\in O} (A_{uj} - \mu - b_u - b_i - F_u G_i^T)^2 + \lambda (\|F_u\|^2 + \|G_i\|^2 + b_u^2 + b_i^2)$$

Item-Based Methods: Extensions

R(u): items rated by u; $S^{k}(i) k$ items most similar to i measured by s_{ij} ; $R^{k}(i; u) = R(u) \cap S^{k}(i)$; N(u): items with implicit feedback from u; $N^{k}(i; u) = N(u) \cap S^{k}(i)$;

• New formula,

$$\hat{A}_{ui} = b_{ui} + |R^k(i;u)|^{-1/2} \sum_{j \in R^k(i;u)} w_{ij}(A_{uj} - b_{uj}) + |N(u)|^{-1/2} \sum_{j \in N(u)} c_{ij}$$

• Optimization problem,

min
$$\sum_{(u,i)\in O} (A_{uj} - \mu - b_u - b_i -$$

$$-|R^{k}(i;u)|^{-1/2} \sum_{j \in R^{k}(i;u)} w_{ij}(A_{uj} - b_{uj}) - |N^{k}(i;u)|^{-1/2} \sum_{j \in N^{k}(i;u)} c_{ij} \right)^{2}$$
$$\lambda(\sum_{j \in R^{k}(i;u)} w_{ij}^{2} + \sum_{j \in N(u)} c_{ij}^{2} + b_{u}^{2} + b_{i}^{2})$$

• Define the symmetric similarity matrix $W = [w_{ij}]$ with $w_{ii} = 0$ • Also define $\tilde{A} = [\tilde{A}_{ui}]$

$$ilde{A}_{uj} = A_{uj} - b_{uj}, \quad j \in R^k(i; u)$$

and $\tilde{A}_{ui} = 0$ otherwise

- The doc-product $\sum_{j \in R^k(i;u)} w_{ij}(A_{uj} b_{uj})$ gives rise to the matrix product $\tilde{A}W$
- So the model is $A \approx \tilde{A}W$, ignoring other correction

- Validation/Probe set: 1.4 million recent ratings
- Test set/Quiz set: 1.4 million recent ratings
- RMSE

< 4[™] >

3 1 4 3 1

Experimental Results

æ

▶ < ∃ >

< 47 ▶

Low-rank matrix factorization

• Extending

$$\hat{A}_{ui} = b_{ui} + F_u G_i^T$$

with implicit feedback

$$\hat{A}_{ui} = b_{ui} + (F_u + |N(u)|^{-1/2} \sum_{j \in N(u)} y_j) G_i^T$$

э

3 1 4 3 1

• New formula

$$\begin{aligned} \hat{A}_{ui} &= b_{ui} + (F_u + |N(u)|^{-1/2} \sum_{j \in N(u)} y_j) G_i^T \\ &+ |R^k(i; u)|^{-1/2} \sum_{j \in R^k(i; u)} w_{ij} (A_{uj} - b_{uj}) + |N(u)|^{-1/2} \sum_{j \in N(u)} c_{ij} \end{aligned}$$

æ

イロト イヨト イヨト イヨト

Model	50 factors	100 factors	200 factors
SVD	0.9046	0.9025	0.9009
Asymmetric-SVD	0.9037	0.9013	0.9000
SVD++	0.8952	0.8924	0.8911

æ

イロト イヨト イヨト イヨト