
university-logo

CSE 8803RS: Recommendation Systems
Lecture 4: Hybrid Models

Hongyuan Zha

School of Computational Science & Engineering
College of Computing

Georgia Institute of Technology

Hongyuan Zha (Georgia Tech) CSE 8803RS: Recommendation Systems 1 / 11

university-logo

Baseline Estimates

User and item effects
— systematic tendencies for some users to give higher ratings
Baseline estimate bui = µ+ bu + bi

Example: a critical user Joe on Titanic
— average overall rating: µ = 3.7
— Titanic better than average bi = .5
— Joe critical: bu = −.3
— bui = 3.7− .3−+.5 = 3.9

Hongyuan Zha (Georgia Tech) CSE 8803RS: Recommendation Systems 2 / 11

university-logo

Item-Based Methods

Better scalability, accuracy and explainability
Key component: item-item similarity

sĳ =
nĳ

nĳ + nρĳ

Sk(i ; u): k most similar items rated by u
Adjusting for user and item effects

Âui = bui +
1∑

j∈Sk(i ;u) sĳ

∑
j∈Sk(i ;u)

sĳ(Auj − buj)

Hongyuan Zha (Georgia Tech) CSE 8803RS: Recommendation Systems 3 / 11

university-logo

Latent Factor Methods

Low-rank matrix factorization
Key ideas: user and item latent profiles Fu and Gi ,

Âui = bui + FuGT
i

Low-rank matrix factorization,

min
∑

(u,i)∈O
(Auj − µ− bu − bi − FuGT

i)2 + λ(‖Fu‖2 + ‖Gi‖2 + b2
u + b2

i)

Hongyuan Zha (Georgia Tech) CSE 8803RS: Recommendation Systems 4 / 11

university-logo

Item-Based Methods: Extensions
R(u): items rated by u; Sk(i) k items most similar to i measured by sĳ ;
Rk(i ; u) = R(u) ∩ Sk(i); N(u): items with implicit feedback from u;
Nk(i ; u) = N(u) ∩ Sk(i);

New formula,

Âui = bui + |Rk(i ; u)|−1/2 ∑
j∈Rk(i ;u)

wĳ(Auj − buj) + |N(u)|−1/2 ∑
j∈N(u)

cĳ

Optimization problem,

min
∑

(u,i)∈O
(Auj − µ− bu − bi−

−|Rk(i ; u)|−1/2 ∑
j∈Rk(i ;u)

wĳ(Auj − buj)− |Nk(i ; u)|−1/2 ∑
j∈Nk(i ;u)

cĳ

2

λ(
∑

j∈Rk(i ;u)

w2
ĳ +

∑
j∈N(u)

c2
ĳ + b2

u + b2
i)

Hongyuan Zha (Georgia Tech) CSE 8803RS: Recommendation Systems 5 / 11

university-logo

Item-Based Methods: Connection with Matrix factorization

Define the symmetric similarity matrix W = [wĳ] with wii = 0
Also define Ã = [Ãui]

Ãuj = Auj − buj , j ∈ Rk(i ; u)

and Ãui = 0 otherwise
The doc-product

∑
j∈Rk(i ;u) wĳ(Auj − buj)gives rise to the matrix

product ÃW
So the model is A ≈ ÃW , ignoring other correction

Hongyuan Zha (Georgia Tech) CSE 8803RS: Recommendation Systems 6 / 11

university-logo

Netflix Data

Validation/Probe set: 1.4 million recent ratings
Test set/Quiz set: 1.4 million recent ratings
RMSE

Hongyuan Zha (Georgia Tech) CSE 8803RS: Recommendation Systems 7 / 11

university-logo

Experimental Results

least square solvers, which are part of standard linear algebra pack-

ages. However, we have found that the following simple gradient

descent solver works much faster. Let us denote the prediction er-

ror, rui − r̂ui, by eui. We loop through all known ratings in K. For
a given training case rui, we modify the parameters by moving in

the opposite direction of the gradient, yielding:

• bu ← bu + γ · (eui − λ4 · bu)

• bi ← bi + γ · (eui − λ4 · bi)

• ∀j ∈ Rk(i; u) :

wij ← wij+γ·
(

|Rk(i; u)|−
1

2 · eui · (ruj − buj) − λ4 · wij

)

• ∀j ∈ Nk(i; u) :

cij ← cij + γ ·
(

|Nk(i; u)|−
1

2 · eui − λ4 · cij

)

The meta-parameters γ (step size) and λ4 are determined by

cross-validation. We used γ = 0.005 and λ4 = 0.002 for the
Netflix data. A typical number of iterations throughout the train-

ing data is 15. Another important parameter is k, which controls
the neighborhood size. Our experience shows that increasing k al-
ways benefits the accuracy of the results on the test set. Hence, the

choice of k should reflect a tradeoff between prediction accuracy
and computational cost.

Experimental results on the Netflix data with the new neighbor-

hood model are presented in Fig. 1. We studied the model under

different values of parameter k. The pink curve shows that accuracy
monotonically improves with rising k values, as root mean squared
error (RMSE) falls from 0.9139 for k = 250 to 0.9002 for k = ∞.

(Notice that since the Netflix data contains 17,770 movies, k = ∞
is equivalent to k =17,770, where all item-item relations are ex-

plored.) We repeated the experiments without using the implicit

feedback, that is, dropping the cij parameters from our model. The

results depicted by the yellow curve show a significant decline in

estimation accuracy, which widens as k grows. This demonstrates
the value of incorporating implicit feedback into the model.

For comparison we provide the results of two previous neigh-

borhood models. First is a correlation-based neighborhood model

(following (3)), which is the most popular CF method in the litera-

ture. We denote this model as CorNgbr. Second is a newer model

[2] that follows (4), which will be denoted as WgtNgbr. For both

these two models, we tried to pick optimal parameters and neigh-

borhood sizes, which were 20 for CorNgbr, and 50 for WgtNgbr.

The results are depicted by the green and cyan lines. Notice that

the k value (the x-axis) is irrelevant to these models, as their differ-
ent notion of neighborhood makes neighborhood sizes incompati-

ble. It is clear that the popular CorNgbr method is noticeably less

accurate than the other neighborhood models, though its 0.9406

RMSE is still better than the published Netflix’s Cinematch RMSE

of 0.9514. On the opposite side, our new model delivers more ac-

curate results even when compared with WgtNgbr, as long as the

value of k is at least 500.
Finally, let us consider running time. Previous neighborhood

models require very light pre-processing, though, WgtNgbr [2] re-

quires solving a small system of equations for each provided pre-

diction. The new model does involve pre-processing where param-

eters are estimated. However, online prediction is immediate by

following rule (10). Pre-processing time grows with the value of k.
Typical running times per iteration on the Netflix data, as measured

on a single processor 3.4GHz Pentium 4 PC, are shown in Fig. 2.

4. LATENT FACTORMODELSREVISITED
As mentioned in Sec. 2.3, a popular approach to latent factor

models is induced by an SVD-like lower rank decomposition of the

!"#

!"#!$

!"#%

!"#%$

!"#&

!"#&$

!"#'

!"#'$

!"#(

!"#($

&$! $!! %!!! &!!! (!!!)!!! *+,*+*-.

!

"
#
$
%

+/01234/5

+/01234/510631*275*8*-

9:-;:<=

>3=;:<=

Figure 1: Comparison of neighborhood-based models. We

measure the accuracy of the new model with and without im-

plicit feedback. Accuracy is measured by RMSE on the Netflix

test set, so lower values indicate better performance. RMSE is

shown as a function of varying values of k, which dictates the
neighborhood size. For reference, we present the accuracy of

two prior models as two horizontal lines: the green line rep-

resents a popular method using Pearson correlations, and the

cyan line represents a more recent neighborhood model.

!"

!#

$"

$#

%"

%#

&"

&#

#"

##

'"

$#" #"" !""" $""" &""" (""")*+)*),-

!

!"
#
$
%&
$
'%
"!
$
'(
!"
)
*
%+
#
"*
,
!$
-
.

Figure 2: Running times (minutes) per iteration of the neigh-

borhood model, as a function of the parameter k.

ratings matrix. Each user u is associated with a user-factors vector
pu ∈ R

f , and each item i with an item-factors vector qi ∈ R
f .

Prediction is done by the rule:

r̂ui = bui + pT
u qi (12)

Parameters are estimated by minimizing the associated squared er-

ror function (5). Funk [9] popularized gradient descent optimiza-

tion, which was successfully practiced by many others [17, 18, 22].

Henceforth, we will dub this basic model “SVD”. We would like to

extend the model by considering also implicit information. Follow-

ing Paterek [17] and our work in the previous section, we suggest

the following prediction rule:

r̂ui = bui + qT
i



|R(u)|−
1

2

∑

j∈R(u)

(ruj − buj)xj

+ |N(u)|−
1

2

∑

j∈N(u)

yj



 (13)

Hongyuan Zha (Georgia Tech) CSE 8803RS: Recommendation Systems 8 / 11

university-logo

Latent Factor Methods: Extensions

Low-rank matrix factorization
Extending

Âui = bui + FuGT
i

with implicit feedback

Âui = bui + (Fu + |N(u)|−1/2 ∑
j∈N(u)

yj)GT
i

Hongyuan Zha (Georgia Tech) CSE 8803RS: Recommendation Systems 9 / 11

university-logo

An Integrated Model

New formula

Âui = bui + (Fu + |N(u)|−1/2 ∑
j∈N(u)

yj)GT
i

+|Rk(i ; u)|−1/2 ∑
j∈Rk(i ;u)

wĳ(Auj − buj) + |N(u)|−1/2 ∑
j∈N(u)

cĳ

Hongyuan Zha (Georgia Tech) CSE 8803RS: Recommendation Systems 10 / 11

university-logo

Experimental Results

Model 50 factors 100 factors 200 factors

SVD 0.9046 0.9025 0.9009
Asymmetric-SVD 0.9037 0.9013 0.9000
SVD++ 0.8952 0.8924 0.8911

Table 1: Comparison of SVD-based models: prediction accu-

racy is measured by RMSE on the Netflix test set for varying

number of factors (f). Asymmetric-SVD offers practical ad-
vantages over the known SVD model, while slightly improving

accuracy. Best accuracy is achieved by SVD++, which directly

incorporates implicit feedback into the SVD model.

the predictions of (10) and (15), thereby allowing neighborhood
and factor models to enrich each other, as follows:

r̂ui = µ + bu + bi + qT
i



pu + |N(u)|−
1

2

∑

j∈N(u)

yj





+ |Rk(i; u)|−
1

2

∑

j∈Rk(i;u)

(ruj − buj)wij + |Nk(i; u)|−
1

2

∑

j∈Nk(i;u)

cij

(16)

In a sense, rule (16) provides a 3-tier model for recommenda-
tions. The first tier, µ+ bu + bi, describes general properties of the
item and the user, without accounting for any involved interactions.
For example, this tier could argue that “The Sixth Sense” movie is
known to be good, and that the rating scale of our user, Joe, tends to

be just on average. The next tier, qT
i

(

pu + |N(u)|−
1

2

∑

j∈N(u) yj

)

,

provides the interaction between the user profile and the item pro-
file. In our example, it may find that “The Sixth Sense” and Joe are
rated high on the Psychological Thrillers scale. The final “neigh-
borhood tier” contributes fine grained adjustments that are hard to
profile, such as the fact that Joe rated low the related movie “Signs”.
Model parameters are determined by minimizing the associated

regularized squared error function through gradient descent. Recall

that eui
def
= rui − r̂ui. We loop over all known ratings in K. For

a given training case rui, we modify the parameters by moving in
the opposite direction of the gradient, yielding:

• bu ← bu + γ1 · (eui − λ6 · bu)

• bi ← bi + γ1 · (eui − λ6 · bi)

• qi ← qi +γ2 · (eui · (pu + |N(u)|−
1

2

∑

j∈N(u) yj)−λ7 ·qi)

• pu ← pu + γ2 · (eui · qi − λ7 · pu)

• ∀j ∈ N(u) :

yj ← yj + γ2 · (eui · |N(u)|−
1

2 · qi − λ7 · yj)

• ∀j ∈ Rk(i; u) :

wij ← wij+γ3·
(

|Rk(i; u)|−
1

2 · eui · (ruj − buj) − λ8 · wij

)

• ∀j ∈ Nk(i; u) :

cij ← cij + γ3 ·
(

|Nk(i; u)|−
1

2 · eui − λ8 · cij

)

When evaluating the method on the Netflix data, we used the fol-
lowing values for the meta parameters: γ1 = γ2 = 0.007, γ3 =
0.001, λ6 = 0.005, λ7 = λ8 = 0.015. It is beneficial to de-
crease step sizes (the γ’s) by a factor of 0.9 after each iteration. The
neighborhood size, k, was set to 300. Unlike the pure neighbor-
hood model (10), here there is no benefit in increasing k, as adding
neighbors covers more global information, which the latent factors
already capture adequately. The iterative process runs for around

50 factors 100 factors 200 factors

RMSE 0.8877 0.8870 0.8868
time/iteration 17min 20min 25min

Table 2: Performance of the integrated model. Prediction ac-

curacy is improved by combining the complementing neighbor-

hood and latent factor models. Increasing the number of fac-

tors contributes to accuracy, but also adds to running time.

30 iterations till convergence. Table 2 summarizes the performance
over the Netflix dataset for different number of factors. Once again,
we report running times on a Pentium 4 PC for processing the 100
million ratings Netflix data. By coupling neighborhood and latent
factor models together, and recovering signal from implicit feed-
back, accuracy of results is improved beyond other methods.
Recall that unlike SVD++, both the neighborhood model and

Asymmetric-SVD allow a direct explanation of their recommen-
dations, and do not require re-training the model for handling new
users. Hence, when explainability is preferred over accuracy, one
can follow very similar steps to integrate Asymmetric-SVD with
the neighborhood model, thereby improving accuracy of the indi-
vidual models while still maintaining the ability to reason about
recommendations to end users.

6. EVALUATIONTHROUGHATOP-KREC-

OMMENDER
So far, we have followed a common practice with the Netflix

dataset to evaluate prediction accuracy by the RMSEmeasure. Achiev-
able RMSE values on the Netflix test data lie in a quite narrow
range. A simple prediction rule, which estimates rui as the mean
rating of movie i, will result in RMSE=1.053. Notice that this rule
represents a sensible “best sellers list” approach, where the same
recommendation applies to all users. By applying personalization,
more accurate predictions are obtained. This way, Netflix Cine-
match system could achieve a RMSE of 0.9514. In this paper,
we suggested methods that lower the RMSE to 0.8870. In fact,
by blending several solutions, we could reach a RMSE of 0.8645.
Nonetheless, none of the 3,400 teams actively involved in the Net-
flix Prize competition could reach, as of 20 months into the com-
petition, lower RMSE levels, despite the big incentive of winning
a $1M Grand Prize. Thus, the range of attainable RMSEs is seem-
ingly compressed, with less than 20% gap between a naive non-
personalized approach and the best known CF results. Successful
improvements of recommendation quality depend on achieving the
elusive goal of enhancing users’ satisfaction. Thus, a crucial ques-
tion is: what effect on user experience should we expect by low-
ering the RMSE by, say, 10%? For example, is it possible, that a
solution with a slightly better RMSE will lead to completely dif-
ferent and better recommendations? This is central to justifying
research on accuracy improvements in recommender systems. We
would like to shed some light on the issue, by examining the effect
of lowered RMSE on a practical situation.
A common case facing recommender systems is providing “top

K recommendations”. That is, the system needs to suggest the top
K products to a user. For example, recommending the user a few
specific movies which are supposed to be most appealing to him.
We would like to investigate the effect of lowering the RMSE on
the quality of top K recommendations. Somewhat surprisingly, the
Netflix dataset can be used to evaluate this.
Recall that in addition to the test set, Netflix also provided a val-

idation set for which the true ratings are published. We used all
5-star ratings from the validation set as a proxy for movies that

Hongyuan Zha (Georgia Tech) CSE 8803RS: Recommendation Systems 11 / 11

