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Matrix Completion

A much broader problem: arbitrary matrices can't be completed, need
some structure/constraints on the matrices

o Positive semi-definite (PSD) matrix completion
— a partial PSD matrix with diagonal entries all ones
— it has PSD completion iff it's graph is chordal

@ Chordal graph: no minimal cycles of length 4 or more, triangulated
graph
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Matrix Completion Under Rank Constraints

A € RN*N is rank-k, known partially

@ Rank-k matrices parameterized by (2N — k)k degree of freedom

@ No hope to recover an arbitrary low-rank matrix from a sample of its
entries

A=epey

has one 1 in (1, N) entry, everywhere else is zero. Clearly this matrix
cannot be recovered from a sampling of its entries unless we pretty
much see all the entries.

@ For instance, if we were to see 90% of the entries selected at random,
then 10% of the time we would only get to see zeroes

(1-1/N)*N ~1-q
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Simple Model of Low-Rank Matrices

It is therefore impossible to recover all low-rank matrices from a set of
sampled entries but can one recover most of them?

@ Rank-k matrices parameterized by SVD

k
A= ZU,‘U,‘V,-T = UkaVkT
i=1

o U¢=[u1,...,ux] and Vi = [vi,..., vk| selected uniformly at random
among all families of k orthonormal vectors = random orthogonal
model

Hongyuan Zha (Georgia Tech) CSE 8803RS: Recommendation Systems 4/10



Which Sampling Sets?

o If A= uvT, Ajj = ujvj, if we don’t sample any element from row one,
we won't know w1y

@ Can one recover a low-rank matrix from almost all sampling sets of
cardinality big enough?

o If the number of known entries is sufficiently large, and if the entries
are sufficiently uniformly distributed = only one low-rank matrix with
these entries.
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Which Algorithm?

@ Optimization problem,
minrank(X),subject to Xj = Ay, (i,i) € O
@ Convex relaxation,
min || X||«, subject to Xjj = Ay, (i,i) € O

where || - ||« is the nuclear norm
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o Let Ac RN*N sampled from random orthogonal model. We also
observe m entries of A with locations sampled uniformly at random.

@ Then there are constants C and ¢ such that if
m > CN>*klog N

@ The minimizer to the nuclear norm optimization is unique and = A
with probability > 1 — cN~3

@ A surprisingly small number of entries are sufficient to complete a
generic low-rank matrix.

Hongyuan Zha (Georgia Tech) CSE 8803RS: Recommendation Systems 7 /10



Improvement

Keshavan et. al.
e m > CNk max{log N, k}.

o log N is related to coupon collector’s problem
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Coherence of an Orthonormal Basis

e Sampling operator A = Po(A) + P3(A)
o If Po(A) we gain little, this happens to A = eey;, also for

A= alululT +02uQu2T, up = (el + 62)/\@, Uy = (61 - 32)/\f2

only the leading 2 x 2 submatrix is nonzero

@ The singular vectors need to be sufficiently spread to minimize the
number of observations needed to recover a low-rank matrix
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Coherence of an Orthonormal Basis

@ Definition: Uy orthonormal matrix

——— T _..112
p(U) = 5 max U] el

@ Some extreme care
— k=1, Uc=1[1,...,1]/V/N gives u(Uy) = 1
— k=1, Uy = e gives u(Ux) = N
— More generally, 1 < u(Ux) < N/k

@ For the random orthogonal model, ;1 = O(1)
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