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Matrix Completion

A much broader problem: arbitrary matrices can’t be completed, need
some structure/constraints on the matrices

Positive semi-definite (PSD) matrix completion
— a partial PSD matrix with diagonal entries all ones
— it has PSD completion iff it’s graph is chordal
Chordal graph: no minimal cycles of length 4 or more, triangulated
graph
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Matrix Completion Under Rank Constraints

A ∈ RN×N is rank-k, known partially
Rank-k matrices parameterized by (2N − k)k degree of freedom
No hope to recover an arbitrary low-rank matrix from a sample of its
entries

A = e1eT
N

has one 1 in (1,N) entry, everywhere else is zero. Clearly this matrix
cannot be recovered from a sampling of its entries unless we pretty
much see all the entries.
For instance, if we were to see 90% of the entries selected at random,
then 10% of the time we would only get to see zeroes

(1− 1/N2)αN2 ≈ 1− α
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Simple Model of Low-Rank Matrices

It is therefore impossible to recover all low-rank matrices from a set of
sampled entries but can one recover most of them?

Rank-k matrices parameterized by SVD

A =
k∑

i=1
σiuivT

i = UkΣkV T
k

Uk ≡ [u1, . . . , uk ] and Vk ≡ [v1, . . . , vk ] selected uniformly at random
among all families of k orthonormal vectors ⇒ random orthogonal
model
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Which Sampling Sets?

If A = uvT ,Aĳ = uivj , if we don’t sample any element from row one,
we won’t know u1

Can one recover a low-rank matrix from almost all sampling sets of
cardinality big enough?
If the number of known entries is sufficiently large, and if the entries
are sufficiently uniformly distributed ⇒ only one low-rank matrix with
these entries.
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Which Algorithm?

Optimization problem,

min rank(X ), subject to Xĳ = Aĳ , (i , i) ∈ O

Convex relaxation,

min ‖X‖∗, subject to Xĳ = Aĳ , (i , i) ∈ O

where ‖ · ‖∗ is the nuclear norm
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Main Theorem

Let A ∈ RN×N sampled from random orthogonal model. We also
observe m entries of A with locations sampled uniformly at random.
Then there are constants C and c such that if

m ≥ CN5/4k logN

The minimizer to the nuclear norm optimization is unique and = A
with probability ≥ 1− cN−3

A surprisingly small number of entries are sufficient to complete a
generic low-rank matrix.
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Improvement

Keshavan et. al.
m ≥ CNk max{logN, k}.
logN is related to coupon collector’s problem
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Coherence of an Orthonormal Basis

Sampling operator A = PO(A) + P⊥O(A)

If PO(A) we gain little, this happens to A = e1eT
N , also for

A = σ1u1uT
1 + σ2u2uT

2 , u1 = (e1 + e2)/
√
2, u2 = (e1 − e2)/

√
2

only the leading 2× 2 submatrix is nonzero
The singular vectors need to be sufficiently spread to minimize the
number of observations needed to recover a low-rank matrix
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Coherence of an Orthonormal Basis

Definition: Uk orthonormal matrix

µ(Uk) ≡ N
k max

1≤i≤N
‖UT

k ei‖2

Some extreme care
— k = 1, Uk = [1, . . . , 1]/

√
N gives µ(Uk) = 1

— k = 1, Uk = ei gives µ(Uk) = N
— More generally, 1 ≤ µ(Uk) ≤ N/k
For the random orthogonal model, µ = O(1)
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