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General Setting

Users: u, v ∈ U ; Items: i , j ∈ I
Ratings: rui indicating degree of preference of user u for item j :
dyadic data, (u, i) dyad
Problem. Ratings are not defined over all U × I, need to predict
those missing ratings
— prediction based users’ past interactions with items
New twists: user and item features
— User features: age, gender, geo-location
— Item features: genre, title words, cast, release date of the movie
— User-item features: Is the user’s favorite actor playing a lead role
in the movie?
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Regression-based Latent Factor Model (RLFM)

Improve prediction for warm-start problem by simultaneously
incorporating features and past interactions
Prediction for cold-start problem through features
Regularized SVD

min
U,V

E (U,V ) =
1
2
∑

(i ,j)∈O
(Aĳ − uivT

j )2 +
λ

2 (‖U‖2F + ‖V ‖2F )

Regularization: shrink to zero, ZeroMean
— Equivalent to Gaussian prior ui ∼ N (0, σ2I) and vj ∼ N (0, σ2I)
New prior: replace the zero mean with a feature-based regression
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First User Latent Factor
First user latent feature for heavy users and light users

Although effective for warm-start, they fail to address the cold-start
problem. Methods that simultaneously incorporate past interaction
data and features for accurate prediction and smoothly handle both
cold-start and warm-start scenarios are attractive.

We propose a regression-based latent factor model (RLFM ) that
a) improves prediction for old user-item dyads by simultaneously
incorporating features and past interactions and b) provides predic-
tions for new dyads through features. In addition, we also provide
a strategy for online estimation of latent factors. We discuss and
illustrate our method on a new recommender system problem that
arises in the context of Yahoo! Front Page where dyads are dynamic
in nature, methods that work only for old dyads are ineffective [2]
here. We also illustrate our method on movie recommender ap-
plication and show that simultaneously incorporating features and
past interactions through our RLFM significantly improves predic-
tion accuracy for both old and new users. Since the Netflix data
does not provide user features, we illustrate our methods on Movie
Lens and Each Movie datasets.

The key idea of RLFM is to associate latent factors (or profiles)
ui and vj to user i and item j where ui and vj are r-dimensional la-
tent factors. We shall refer to r as the number of latent dimensions.
Interaction is captured through a multiplicative function u′

ivj . This
is similar in spirit to SVD for complete matrices; the incomplete-
ness, imbalance and noise in data makes it a significantly harder
problem. In particular, it is important to regularize the latent fac-
tors to avoid over-fitting and achieve the best bias-variance trade-
off. Several authors [24, 8, 1, 22] have recently studied the prob-
lem, especially in the context of the Netflix competition where it
is referred to as matrix factorization. The regularization is mostly
based on a zero-mean Gaussian prior on the factors, we refer to this
method as ZeroMean. Our method also assumes a Gaussian prior
but replaces the zero mean with a feature-based regression; thus,
it simultaneously regularizes both user and item factors through
known features. We show that such a prior poses challenging issues
for scalable computation and has other theoretical implications. In
particular, it addresses both cold and warm-start problems seam-
lessly through a single model. It also induces marginal correlations
among response values that share a common user or item. Corre-
lation provides extra information for response at a dyad (i, j) and
improves predictive performance. Thus, if two movies are corre-
lated, knowing the rating of user i on the first one in the past helps
us accurately predict his/her rating on the other one. In fact, we
show that our model is a stochastic process (similar to a Gaussian
process) on the dyadic space with non-zero covariance only among
responses with either a common user or item. While Gaussian pro-
cesses are known to provide accurate predictive models in several
contexts [21], the main computational bottleneck is the cubic com-
putation associated with a dense correlation matrix. In our case, we
exploit the special structure of the covariance process and reduce
the computational complexity to “essentially” linear in the number
of data points, users and items.

Our RLFM method works by anchoring user/item profiles around
a global feature-based one whereby user/item-specific profiles are
then constructed by estimating deviations from the global ones in
a smooth fashion; the amount of deviation depends on sample size
and correlations among observations. In particular, users/items with
sparse data are deemed more unreliable to deviate and “shrunk”
aggresively to the global one. Thus, users/items start out with pro-
files based on their known features that gets refined smoothly with
the availability of more data. This ability to move from coarse
to fine resolutions in a smooth fashion after accounting for differ-
ing sample sizes, correlation and heterogeneity are key aspects that
provides for an accurate, scalable and general predictive method
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(a) RLFM for heavy users
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(b) ZeroMean for heavy users
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(c) RLFM for light users
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(d) ZeroMean for light users

Figure 1: Comparing latent factors estimated through RLFM ,
ZeroMean and FeatureOnly . Each point (x, y) in a plot reports
the estimated values, x and y, of the first latent factor of a user
using the two methods indicated in the plot. For light users,
ZeroMean collapse to zero, RLFM on the other hand collpases
to FeatureOnly .

through RLFM for large scale dyadic data. To provide more intu-
ition, Figure 1 shows the relationship among user latent factors es-
timated separately for a sample of heavy and light users on the Ya-
hoo! Front Page using RLFM , ZeroMean and FeatureOnly . Here,
ZeroMean is a model that uses latent factors regularized through
zero mean priors(matrix factorization), FeatureOnly is based on fea-
tures alone while RLFM uses latent factors regularized through re-
gression based priors. For light users, ZeroMean “shrinks” the pro-
files close to zero and leads to biased estimates. RLFM on the
other hand recognizes the data sparseness and falls back on the
FeatureOnly profiles. For heavy users, ZeroMean is aggressive and
tends to overfit the data. RLFM on the other hand anchors itself
around FeatureOnly profiles and deviates from it in a smooth way
that leads to better regularization.

Our contributions are as follows. We propose a novel class
of latent factor models called RLFM that incorporates both known
user/item features and past interaction data into a single model for
predicting dyadic response in a generalized linear model (GLM)
framework. Our method provides a single unified framework to
handle both cold and warm start scenarios in a smooth way. We
prove theoretical equivalence to a stochastic process model with
polynomial kernel on a dyadic space. We provide a scalable, ac-
curate and robust model fitting procedure through a Monte Carlo
EM algorithm with complexity linear in number of observed dyads,
users and items. We also provide a procedure to generalize our
method to dynamic settings through an online updating procedure
for the factors. Our methods are illustrated on benchmark datasets
and on a new recommender system application that arises in the
context of displaying the best stories to users visiting the Yahoo!
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First User Latent Factor

Light users
— ZeroMean: shrink to zero, leading to bias
— RLFM: closely anchored around known feature
Heavy users
— ZeroMean: all over the place, may lead to overfitting
— RLFM: deviate from feature in a smooth way
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Notations

User features: wi ∈ Rp; Item features: zj ∈ Rq; Dyad features:
xĳ ∈ Rs . Xĳ = [xĳ ,wi , zj ]. Rating yĳ

Observed data {Xĳ , yĳ}. Need to build a probabilistic model
P({yĳ} | {Xĳ})
Remove systematic effects by xĳ , considering Aĳ − bT xĳ
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Models in Matrix Notations

W user features, Z item features
ZeroMean: A ≈ UV T

Interaction: A ≈WXZT

FeatureOnly: A ≈WST + TZT + (WG)(ZD)T

— X be low-rank
— in the paper: T = edT

0 , and S = egT
0

RLFM: A ≈WST + TZT + (U + WG)(V + ZD)T

— matrices marked with red are unknown parameters
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RLFM and Regression-based Prior

Rather than using shrinking to zero, RLFM can be interpreted as
using regression-based prior
Ignore the WST + TZT , and define

Û = U + WG , V̂ = V + ZD

Then A ≈ ÛV̂ T

If we use regularization on U and V , then

min
Û,V̂ ,G,D

‖S � (A− ÛV̂ T )‖2F + λ(‖Û −WG‖2F + ‖V̂ − ZD‖2F )
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Probabilistic Model for RLFM

W user features, Z item features
First stage: Generalized linear model for ratings,

yĳ ∼ N(mĳ , σ
2), mĳ = bT xĳ + αi + βj + uivT

j

Second stage:

αi = wigT
0 + εαi , εαi ∼ N(0, aα)

βj = zjdT
0 + εβi , εβi ∼ N(0, aβ)

ui = wiG + εui , εui ∼ N(0,Au)

vj = zjD + εvi , εvi ∼ N(0,Av )

Parameters: Θ = {b, g0, d0,G ,D, aα, aβ,Au,Av}
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RLFM Graphical Model representation

Figure 2: Graphical representation of RLFM . Variance com-
ponents (σ2, aα, aβ , Au, Av) are omitted for succinctness.

pendencies in dyadic response as we shall see later. The first stage
model is also referred to as observation equation.

We specify [yij |Xij , δij , Θ1] in a generalized linear model (GLM)
framework , linear, logistic and Poisson regression are special cases
(see [18, 4] for more details). Letting mij = E[yij |δij , xij ], we as-
sume l(mij) is given by Equation (1) in Table 1, where l is some
transformation of the mean whose range is the real line. In this
paper, the illustrative datasets are analyzed using the linear and lo-
gistic regression models in the first stage; we provide computation
details for both but note that extension to other members of the
GLM family is standard. For ease of exposition, we develop the
theory for Gaussian response (linear regression) where several for-
mulae are available in closed form.

2.3 Second Stage Model
Our second stage model specifies [{δij}|{Xij}, Θ2] which we

shall refer to as the state equation. For many applications, K <<
MN ; in fact, the imbalance in our data is such that K ∝ (M +N).
Moreover, there is heterogeneity in the number of observations as-
sociated with users/items – a small fraction of users/items account
for a large fraction. The total number of parameters in the first stage
observation model is s+M+N+r(M+N) = s+(r+1)(M+N).
Clearly, the number of parameters is large and maximum likelihood
estimates (MLE) of model parameters overfit even for reasonably
small values of r. Hence, it is imperative to put constraints on the
latent factors through the state equation to avoid over-fitting. In
fact, the state equation determines the quality and predictive per-
formance of the model to a large extent. In this paper, we propose a
novel state equation that assumes latent factors {δij} are functions
of observed features {Xij}. Specifically, we assume conditional
independence among latent factors

[{αi}, {ui}, {βj}, {vj} | {wi}, {zj}, Θ2] = (2)
M∏

i=1

[αi | wi, g0, aα]
M∏

i=1

[ui | wi, G, Au]

N∏

j=1

[βj | zj , d0, aβ ]
N∏

j=1

[vj | zj , D, Av]

where Θ2 = (g0, aα, G, Au, d0, aβ , D, Av). The component la-
tent factor distributions are given by Equation (2) in Table 1. We
note that it is also possible to use non-linear functions G(w), D(z),
g0(w), d0(z), we assumed linearity to ensure scalability. To com-
plete model specification, we note that it is possible to further reg-
ularize regression coefficients by using any off-the-shelf procedure
like ridge regression, LASSO. We use a t-prior on the coefficients
recently introduced by [13] which performs automatic variable se-

lection by setting the coefficients of non-informative features to be
close to zero.

2.4 Prediction Function
After fitting the model using observations {yold

ij } and {Xold
ij },

we obtain an estimate of the parameters Θ̂. Then, given the fea-
tures Xnew

ij for a new dyad we would ideally predict the response
ynew

ij by its posterior predictive mean E[ynew
ij | {yold

ij }, Xnew
ij , Θ̂]

after marginalizing over [δij |{yold
ij }, {Xold

ij }, Θ̂], this can be com-
putationally expensive at runtime. For the sake of efficiency, we
simply use point estimates that are commonly used in practice and
does not necessarily lead to loss in prediction accuracy [27]. That
is, we predict ynew

ij by

(xnew
ij )′b̂ + α̂i + β̂j + û′iv̂j ,

where φ̂ = E[φ | {yold
ij }, {Xold

ij }, Θ̂] for φ = αi, βj , ui and vj .
Note that these posterior means are also the output from the fitting
procedure. For new users and items, the posterior means are just
prior means predicted purely by features; e.g., α̂i = ĝ′0wi, etc. For
old users and items, the posterior means provide the “right” balance
between features and past activity through our model.

2.5 Special Cases of Our Model
We show some popular classes of warm-start and cold-start mod-

els arise as special cases of RLFM , providing further insights on
how it provides a unified framework to deal with both scenarios
in a smooth way. In fact, assuming g0 = d0 = G = D = 0,
one obtains the probabilistic matrix factorization model, which we
call ZeroMean , [23, 24, 22] that has successfully modeled explicit
movie ratings data. Next, we point out the relation between em
RLFM and a pure feature-based model for a Gaussian response
variable. A pure feature-based model is given as

yij = h(xij , wi, zj) + εij (3)

where h is an unknown function and the ε’s are zero mean white
noise random variables. One natural choice with categorical pre-
dictors is a linear h, i.e.,

h(xij , wi, zj) = x′ijb + g′0wi + d′0zj + w′
iB

p×qzj .

The unknown matrix of coefficients B capture interactions among
users and items, estimating B may however be challenging for
large values of p and/or q. In general, one takes recourse to some
form of penalization on the entries of B (e.g. L0, L1 or L2 penal-
ties). Another attractive approach that is often used is a low rank
approximation of B = G′D that reduce the number of parameters
from pq to r(p + q). Plugging Equation (2) into Equation (1) in
Table 1 for the Gaussian case, we get

yij = x′ijb + g′0wi + d′0zj + w′
iG

′Dzj + ε∗ij (4)

ε∗ij = εij + εα
i + εβ

j + (εu
i )′εv

j + (εu
i )′Dzj + (εv

j )′Gwi

Hence, the pure feature based model is obtained as a special case of
RLFM by assuming a zero variance for random effects, i.e., ε∗ij =
εij in Equation 4. We shall refer to this as FeatureOnly . The ad-
ditional randomness in RLFM introduced through a two-stage pro-
cess induce dependencies in response values sharing the same user
or item and improves predictive performance.

2.6 Stochastic Process on Dyadic Space
Regularizing latent factors through regression has important con-

sequences when modeling sparse dyadic data. For users/items with
little data, we obtain reliable factor estimates by using the regres-
sion estimates as a fallback. In fact, the model provides a unified

22
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MLE and Prediction

Two sets of parameters:
— δĳ = (αi , βj , ui , vj): (latent) parameters
— Θ = {b, g0, d0,G ,D, aα, aβ,Au,Av}: hyperparamters
Given data {Xĳ} and {yĳ}
For a fixed Θ, posterior distribution of the latent factors,

p(δĳ |{yĳ}, {Xĳ},Θ)

Prediction distribution for ynew
ĳ , given Xnew

ĳ ,

p(ynew
ĳ |Xnew

ĳ , {yĳ}, {Xĳ},Θ) =

∫
p(ynew

ĳ |Xnew
ĳ , δĳ)dp(δĳ |{yĳ}, {Xĳ},Θ)

Hongyuan Zha (Georgia Tech) CSE 8803RS: Recommendation Systems 11 / 18
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Bayesian and Empirical Bayesian

For full Bayesian, we need prior on Θ and another set of
hyperparameters to go with it
Empirical Bayesian (Type 2 MLE, GMLE, evidence approximation),
settles on a specific Θ obtained by

max
Θ

p({yĳ} | {Xĳ},Θ)⇒ ΘMLE

As in ordinary regression, we assume {Xĳ} fixed
— and it will be removed from subsequent formula,

max
Θ

p({yĳ} | Θ)⇒ ΘMLE

Hongyuan Zha (Georgia Tech) CSE 8803RS: Recommendation Systems 12 / 18
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Approximate Prediction

Settle on a specific δĳ ,

ynew
ĳ = E(ynew

ĳ |Xnew
ĳ , δ̂ĳ) = b̂T xnew

ĳ + α̂i + β̂j + ûi v̂T
j

where for φ ∈ {αi , βj , ui , vj},

φ̂ = E(φ|{yĳ},ΘMLE ) ≈ 1
L

L∑
`=1

φ(`)

Recall p({δĳ}|{yĳ},ΘMLE )
— will have L samples φ(`), ` = 1, . . . , L drawn from the above using
Gibbs sampling
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A Brief Review of EM

Given distribution p({yĳ}, {δĳ}|Θ), want to maximize p({yĳ}|Θ) w.r.t. Θ

1 Choose initial Θold

2 E Step. Evaluate p({δĳ}|{yĳ},Θ)

3 M Step. Find Θnew

max
Θ

∑
{δĳ}

p({δĳ}|{yĳ},Θold ) log p({yĳ}, {δĳ}|Θ)⇒ Θnew

4 Θold ← Θnew , goto Step 2

Hongyuan Zha (Georgia Tech) CSE 8803RS: Recommendation Systems 14 / 18
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Monte Carlo EM (MCEM)

For the E Step,
1 Rather than evaluating p({δĳ}|{yĳ},Θold )

2 We draw L samples from p({δĳ}|{yĳ},Θold )⇒ p∗({δĳ}|{yĳ},Θold )

3 Find Θnew

max
Θ

∑
{δĳ}

p∗({δĳ}|{yĳ},Θold ) log p({yĳ}, {δĳ}|Θ)⇒ Θnew

Hongyuan Zha (Georgia Tech) CSE 8803RS: Recommendation Systems 15 / 18
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A Brief Review of Gibbs Sampling

Sample from p(z1, z2, z3). From some initial value (z0
1 , z0

2 , z0
3 )

1 zk+1
1 ∼ p(z1|zk

2 , zk
3 )

2 zk+1
2 ∼ p(z2|zk+1

1 , zk
3 )

3 zk+1
3 ∼ p(z3|zk+1

1 , zk+1
2 )

Negative complete data log-likelihood − log p({yĳ}, {δĳ}|Θ),
Negative complete data log-likelihood:

∆ = − log(Pr[{yij}, {δij} | {Xij}, Θ]) = Constant + 1
2

∑
ij

(
1

σ2
ij

(yij − αi − βj − x′ijb− u′ivj)2 + log σ2
ij

)

+ 1
2

∑
i

(
1

aα
(αi − g′0wi)2 + log aα + (ui −Gwi)′A

−1
u (ui −Gwi) + log(det Au)

)

+ 1
2

∑
j

(
1

aβ
(βj − d′0zi)2 + log aβ + (vj −Dzj)′A

−1
v (vj −Dzj) + log(det Av)

)

Latent factors {αi} Latent factors {βi}
Let oij = yij − βj − x′ijb− u′ivj

∂
∂αi

∆ = ( 1
aα

+
∑

j∈Ji

1
σ2

ij
)αi − (

g′
0wi
aα

+
∑

j∈Ji

oij

σ2
ij

)

Var[αi|Rest] = ( 1
aα

+
∑

j∈Ji

1
σ2

ij
)−1

E[αi|Rest] = Var[αi|Rest]( g′
0wi
aα

+
∑

j∈Ji

oij

σ2
ij

)

Let oij = yij − αi − x′ijb− u′ivj

∂
∂βi

∆ = ( 1
aβ

+
∑

i∈Ij

1
σ2

ij
)βj − (

d′
0zj

aβ
+

∑
i∈Ij

oij

σ2
ij

)

Var[βj |Rest] = ( 1
aβ

+
∑

i∈Ij

1
σ2

ij
)−1

E[βj |Rest] = Var[βj |Rest]( d′
0zj

aβ
+

∑
i∈Ij

oij

σ2
ij

)

Latent factors {ui} Latent factors {vj}
Let oij = yij − αi − βj − x′ijb

∂
∂ui

∆ = (A−1
u +

∑
j∈Ji

vjv′
j

σ2
ij

)ui − (A−1
u Gwi +

∑
j∈Ji

oijvj

σ2
ij

)

Var[ui|Rest] = (A−1
u +

∑
j∈Ji

vjv′
j

σ2
ij

)−1

E[ui|Rest] = Var[ui|Rest](A−1
u Gwi +

∑
j∈Ji

oijvj

σ2
ij

)

Let oij = yij − αi − βj − x′ijb
∂

∂vj
∆ = (A−1

v +
∑

i∈Ij

uiu′
i

σ2
ij

)vj − (A−1
v Dzi +

∑
i∈Ij

oijuj

σ2
ij

)

Var[vj |Rest] = (A−1
v +

∑
i∈Ij

uiu′
i

σ2
ij

)−1

E[vj |Rest] = Var[vj |Rest](A−1
v Dzi +

∑
i∈Ij

oijuj

σ2
ij

)

Note that Ij denotes the set of users who rated item j and Ji denotes the set of items that user i rated. For the Gaussian model, σij = σ. For the Logistic
model, σij is set according to Section 3.2.

Table 2: Detail formulas for model fitting

online learning process. We describe our batched online learning
scheme below.

Assume the hyperparameters Θ have been estimated through large
amount of training data; i.e., we assume Θ is fixed and only up-
date the latent factors {δij}. We also assume data is updated in a
batched fashion. In general, updating model parameters for each
observation is expensive; batched updates every few hours (or ev-
ery few observations) are more reasonable.

At the end of our training phase, we run the Gibbs sampler for
large number of iterations (200 − 500) and estimate the posterior
mean and covariance of the latent factor each user and item. For
each batch of observations received online, the current posterior
becomes the prior and combined with the data likelihood provides
the new updated posterior. However, computing the posterior accu-
rately requires both mean and variance estimates; the latter requires
a large number of Gibbs samples, making the method slow in online
settings. We perform an approximation that only computes the pos-
terior mode (ICM or small number of Gibbs sample) and combines
with previous factors through an exponentially-weighted moving
average (EWMA) to obtain the updated factors. The EWMA en-
sures a stable estimate of the factors over time. In fact, we provide
different EWMA weights to new and old user/items; old elements
evolve much slower than the new ones in our model. After careful
tweaking, we found EWMA weights of .5 an .99 on new and old
elements performed well in our applicatons. For movie datasets,
we updated batches of size 10K, for Yahoo! Frontpage we update
a batch of 1K at a time. We denote this method by Dyn-RLFM.

5. EXPERIMENTS
We illustrate our methods on benchmark datasets (MovieLens

and EachMovie) and on a novel recommender system that arises
in the context of Yahoo! Front Page. We did not consider Netflix
data since it does not provide user features; hence it is not a good
example to illustrate our method. In fact, improving performance
on Netflix is not the focus of this paper; our goal is to present a new
methodology that provides effective predictions for large scale in-
complete dyadic data by smoothly merging both cold-start (through

features) and warm-start (through past interactions) situations into
a single unified modeling framework. For movie datasets, we use
RMSE (root mean square error) as the performance metric, this is
popular in the movie recommendation domain. Note that even a
0.01 improvement in RMSE is significant (the top 40 competitors
of the Netflix Prize have RMSE differences within 0.015). For Ya-
hoo! data, we use ROC curves.

Methods: We evaluate our RLFM by comparing it with the fol-
lowing methods: ZeroMean and FeatureOnly (described in Section
2.5) that are special cases of our model; MostPopular is a baseline
method that recommends the most popular items in the training set
to users in the test set; FilterBot [20] is a hybrid method designed
to handle cold-start collaborative filtering. We used 13 bots (based
on global popularity, movie genre and the popularity in each of the
11 user groups defined based on age and gender) coupled with an
item-based algorithm [15]. Several other collaborative filtering al-
gorithms (including pure item-item similarity, user-user similarity,
regression-based) were also tried. Since FilterBot was uniformly
better among these, we only report results for it.

MovieLens data: We conducted experiments on two MovieLens
datasets: MovieLens-100K, which consists of 100K ratings with
943 users and 1,682 movies, and MovieLens-1M, which consists
of 1M ratings with 6,040 users and 3,706 movies (although the
readme file mentions 3,900 movies). User features used include
age, gender, zipcode (we used the first digit only), occupation;
item features include movie genre. MovieLens-100K comes with
5 pre-specified training-testing splits for 5-fold cross validation.
We report the RMSEs of RLFM , ZeroMean and FeatureOnly on
this dataset with r = 5. We note that for this data, there are
no new users and items in the test set; the gain obtained through
RLFM relative to ZeroMean is entirely due to better regularization
achieved through feature-based prior (see Figure 1 for an example).

RLFM ZeroMean FeatureOnly
MovieLens-100K 0.8956 0.9064 1.0968

However, testing methods based on random splits may end up using
the future to predict the past. This does not correspond to the real
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Conditional Distribution Used in Gibbs Sampling

Use completing the squares, all the conditionals are Gaussian,

Negative complete data log-likelihood:

∆ = − log(Pr[{yij}, {δij} | {Xij}, Θ]) = Constant + 1
2

∑
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(
1

σ2
ij

(yij − αi − βj − x′ijb− u′ivj)2 + log σ2
ij

)

+ 1
2

∑
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Note that Ij denotes the set of users who rated item j and Ji denotes the set of items that user i rated. For the Gaussian model, σij = σ. For the Logistic
model, σij is set according to Section 3.2.

Table 2: Detail formulas for model fitting

online learning process. We describe our batched online learning
scheme below.

Assume the hyperparameters Θ have been estimated through large
amount of training data; i.e., we assume Θ is fixed and only up-
date the latent factors {δij}. We also assume data is updated in a
batched fashion. In general, updating model parameters for each
observation is expensive; batched updates every few hours (or ev-
ery few observations) are more reasonable.

At the end of our training phase, we run the Gibbs sampler for
large number of iterations (200 − 500) and estimate the posterior
mean and covariance of the latent factor each user and item. For
each batch of observations received online, the current posterior
becomes the prior and combined with the data likelihood provides
the new updated posterior. However, computing the posterior accu-
rately requires both mean and variance estimates; the latter requires
a large number of Gibbs samples, making the method slow in online
settings. We perform an approximation that only computes the pos-
terior mode (ICM or small number of Gibbs sample) and combines
with previous factors through an exponentially-weighted moving
average (EWMA) to obtain the updated factors. The EWMA en-
sures a stable estimate of the factors over time. In fact, we provide
different EWMA weights to new and old user/items; old elements
evolve much slower than the new ones in our model. After careful
tweaking, we found EWMA weights of .5 an .99 on new and old
elements performed well in our applicatons. For movie datasets,
we updated batches of size 10K, for Yahoo! Frontpage we update
a batch of 1K at a time. We denote this method by Dyn-RLFM.

5. EXPERIMENTS
We illustrate our methods on benchmark datasets (MovieLens

and EachMovie) and on a novel recommender system that arises
in the context of Yahoo! Front Page. We did not consider Netflix
data since it does not provide user features; hence it is not a good
example to illustrate our method. In fact, improving performance
on Netflix is not the focus of this paper; our goal is to present a new
methodology that provides effective predictions for large scale in-
complete dyadic data by smoothly merging both cold-start (through

features) and warm-start (through past interactions) situations into
a single unified modeling framework. For movie datasets, we use
RMSE (root mean square error) as the performance metric, this is
popular in the movie recommendation domain. Note that even a
0.01 improvement in RMSE is significant (the top 40 competitors
of the Netflix Prize have RMSE differences within 0.015). For Ya-
hoo! data, we use ROC curves.

Methods: We evaluate our RLFM by comparing it with the fol-
lowing methods: ZeroMean and FeatureOnly (described in Section
2.5) that are special cases of our model; MostPopular is a baseline
method that recommends the most popular items in the training set
to users in the test set; FilterBot [20] is a hybrid method designed
to handle cold-start collaborative filtering. We used 13 bots (based
on global popularity, movie genre and the popularity in each of the
11 user groups defined based on age and gender) coupled with an
item-based algorithm [15]. Several other collaborative filtering al-
gorithms (including pure item-item similarity, user-user similarity,
regression-based) were also tried. Since FilterBot was uniformly
better among these, we only report results for it.

MovieLens data: We conducted experiments on two MovieLens
datasets: MovieLens-100K, which consists of 100K ratings with
943 users and 1,682 movies, and MovieLens-1M, which consists
of 1M ratings with 6,040 users and 3,706 movies (although the
readme file mentions 3,900 movies). User features used include
age, gender, zipcode (we used the first digit only), occupation;
item features include movie genre. MovieLens-100K comes with
5 pre-specified training-testing splits for 5-fold cross validation.
We report the RMSEs of RLFM , ZeroMean and FeatureOnly on
this dataset with r = 5. We note that for this data, there are
no new users and items in the test set; the gain obtained through
RLFM relative to ZeroMean is entirely due to better regularization
achieved through feature-based prior (see Figure 1 for an example).

RLFM ZeroMean FeatureOnly
MovieLens-100K 0.8956 0.9064 1.0968

However, testing methods based on random splits may end up using
the future to predict the past. This does not correspond to the real
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Monte Carlo EM (MCEM)

For the M Step,
1 Five separate regression problem to compute each pair in

Θ = {b, σ, g0, aα, d0, aβ,G ,Au,D,Av}
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