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Probabilistic Models

Rating matrix A ≈ UV T , let Iĳ be the indicator,

p(A|U,V , α) =
M∏

i=1

N∏
j=1

(
N (Aĳ |UiV T

j , α
−1)
)Iĳ

p(U|αU) =
M∏

i=1
N (Ui |0, α−1

U I)

p(V |αV ) =
N∏

j=1
N (Vj |0, α−1

V I)

Log-posterior,

log p(U,V |A, α, αU , αV ) = log p(A|U,V , α)+log p(U|αU)+log p(V |αV )+C
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Probabilistic Models

The negative log-posterior is equivalent to

E (U,V ) =
1
2

M∑
i=1

N∑
j=1

Iĳ(Aĳ − UiV T
j )2 +

λU
2 ‖U‖

2
F +

λV
2 ‖V ‖

2
F

and λU = αU/α, and λV = αV /α

Complexity control done by selecting λU and λV using
cross-validation for example
Use prior of the hyper-parameters αU , αV , α and jointly optimize all
parameters
User evidence function p(R|αU , αV , α)
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Full Bayesian Models

Models for user and item profiles,

p(U|µU ,ΛU) =
M∏

i=1
N (Ui |µU ,Λ

−1
U )

p(V |µV ,ΛV ) =
N∏

j=1
N (Vj |µV ,Λ

−1
V )

Gassian-Wishart priors on hyper-parameters ΘU = (µU ,ΛU) and
ΘV = (µV ,ΛV ),

p(ΘU |Θ0) = p(µU |ΛU)p(ΛU) = N (µU |µ0, (β0ΛU)1)W(ΛU |W0, ν0)

with Θ0 = (µ0, β0,W0, ν0)
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Predictive Distribution

Integrate out parameters and hyper-parameters,

p(Aĳ |A,Θ0) =

∫
p(Aĳ |U,V )dp(U,V ,ΘU ,ΘV |A,Θ0)

Monte Carlo methods,

p(Aĳ |R,Θ0) =
1
n

n∑
k=1

p(Aĳ |Uk ,V k)

(Uk ,V k ,Θk
U ,Θ

k
V ) ∼ p(U,V ,ΘU ,ΘV |A,Θ0), k = 1, . . . , n
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Gibbs Sampling

Cycle through the variables, sampling each one from its distribution
conditional on the current values of all other variables

p(U,V ,ΘU ,ΘV |A,Θ0) ∼ p(A|U,V , α)p(U|ΘU)p(V |ΘV )×

×p(ΘU |Θ0)p(ΘV |Θ0)

Conditional probability,

p(Ui |A,V ,ΘU , α) ∼
N∏

j=1

(
N (Aĳ |UiV T

j , α
−1)
)Iĳ p(Ui |µU ,ΛU)

= N (Ui |µ∗i , (Λ∗Ui )
−1)

Using the technique of completing the squares,

Λ∗Ui = ΛU + α
N∑

j=1
(VjV T

j )Iĳ

Hongyuan Zha (Georgia Tech) CSE 8803RS: Recommendation Systems 6 / 10



university-logo

Gibbs Sampling

Using the technique of completing the squares,

Λ∗Ui = ΛU + α
N∑

j=1
(VjV T

j )Iĳ

µ∗i = (Λ∗Ui )
−1

α N∑
j=1

(RĳVj)
Iĳ + ΛUµU


p(ΘU |U,Θ0)
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Gibbs Sampling: Algorithm

Bayesian Probabilistic Matrix Factorization using MCMC

the Monte Carlo-based methods is that asymptoti-
cally they produce exact results. In practice, how-
ever, MCMC methods are usually perceived to be so
computationally demanding that their use is limited
to small-scale problems.

3.3. Inference

One of the simplest MCMC algorithms is the Gibbs
sampling algorithm, which cycles through the latent
variables, sampling each one from its distribution con-
ditional on the current values of all other variables.
Gibbs sampling is typically used when these condi-
tional distributions can be sampled from easily.

Due to the use of conjugate priors for the parame-
ters and hyperparameters in the Bayesian PMF model,
the conditional distributions derived from the poste-
rior distribution are easy to sample from. In particu-
lar, the conditional distribution over the user feature
vector Ui, conditioned on the movie features, observed
user rating matrix R, and the values of the hyperpa-
rameters is Gaussian:

p(Ui|R, V, ΘU , α) = N
(

Ui|µ
∗

i ,
[

Λ∗

i

]−1)
(11)

∼
M
∏

j=1

[

N (Rij |U
T
i Vj , α

−1)

]Iij

p(Ui|µU , ΛU ),

where

Λ∗

i = ΛU + α
M
∑

j=1

[

VjV
T
j

]Iij (12)

µ∗

i = [Λ∗

i ]
−1

(

α
M
∑

j=1

[

VjRij

]Iij + ΛUµU

)

. (13)

Note that the conditional distribution over the user
latent feature matrix U factorizes into the product of
conditional distributions over the individual user fea-
ture vectors:

p(U |R, V, ΘU ) =
N
∏

i=1

p(Ui|R, V, ΘU).

Therefore we can easily speed up the sampler by sam-
pling from these conditional distributions in parallel.
The speedup could be substantial, particularly when
the number of users is large.

The conditional distribution over the user hyperpa-
rameters conditioned on the user feature matrix U is
given by the Gaussian-Wishart distribution:

p(µU , ΛU |U, Θ0) =

N (µU |µ
∗

0, (β
∗

0ΛU )−1)W(ΛU |W
∗

0 , ν∗

0 ), (14)

where

µ∗

0 =
β0µ0 + NŪ

β0 + N
, β∗

0 = β0 + N, ν∗

0 = ν0 + N,

[

W ∗

0

]−1
= W−1

0 + NS̄ +
β0N

β0 + N
(µ0 − Ū)(µ0 − Ū)T

Ū =
1

N

N
∑

i=1

Ui S̄ =
1

N

N
∑

i=1

UiU
T
i .

The conditional distributions over the movie feature
vectors and the movie hyperparameters have exactly
the same form. The Gibbs sampling algorithm then
takes the following form:

Gibbs sampling for Bayesian PMF

1. Initialize model parameters {U1, V 1}

2. For t=1,...,T

• Sample the hyperparameters
(Eq. 14):

Θt

U ∼ p(ΘU |U t
, Θ0)

Θt

V ∼ p(ΘV |V t
, Θ0)

• For each i = 1, ..., N sample user features in
parallel (Eq. 11):

U
t+1
i ∼ p(Ui|R, V

t
, Θt

U )

• For each i = 1, ..., M sample movie features in
parallel:

V
t+1
i ∼ p(Vi|R, U

t+1
, Θt

V )

4. Experimental Results

4.1. Description of the dataset

The data, collected by Netflix, represent the distribu-
tion of all ratings Netflix obtained between October,
1998 and December, 2005. The training data set con-
sists of 100,480,507 ratings from 480,189 randomly-
chosen, anonymous users on 17,770 movie titles. As
part of the training data, Netflix also provides valida-
tion data, containing 1,408,395 ratings. In addition,
Netflix also provides a test set containing 2,817,131
user/movie pairs with the ratings withheld. The pairs
were selected from the most recent ratings from a sub-
set of the users in the training data set. Performance
is assessed by submitting predicted ratings to Netflix
which then posts the root mean squared error (RMSE)
on an unknown half of the test set. As a baseline, Net-
flix provided the test score of its own system trained
on the same data, which is 0.9514.
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Netflix Results

Bayesian Probabilistic Matrix Factorization using MCMC
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Figure 2. Left panel: Performance of SVD, PMF, logistic PMF, and Bayesian PMF using 30D feature vectors, on the
Netflix validation data. The y-axis displays RMSE (root mean squared error), and the x-axis shows the number of epochs,
or passes, through the entire training set. Right panel: RMSE for the Bayesian PMF models on the validation set as a
function of the number of samples generated. The two curves are for the models with 30D and 60D feature vectors.

4.2. Training PMF models

For comparison, we have trained a variety of linear
PMF models using MAP, choosing their regularization
parameters using the validation set. In addition to lin-
ear PMF models, we also trained logistic PMF mod-
els, in which we pass the dot product between user-
and movie-specific feature vectors through the logistic
function σ(x) = 1/(1 + exp(−x)) to bound the range
of predictions:

p(R|U, V, α) =
N
∏

i=1

M
∏

j=1

[

N (Rij |σ(UT
i Vj), α

−1)

]Iij

. (15)

The ratings 1, ..., 5 are mapped to the interval [0, 1]
using the function t(x) = (x − 1)/4, so that the range
of valid rating values matches the range of predictions
our model can make. Logistic PMF models can some-
times provide slightly better results than their linear
counterparts.

To speed up training, instead of performing full batch
learning, we subdivided the Netflix data into mini-
batches of size 100,000 (user/movie/rating triples) and
updated the feature vectors after each mini-batch. We
used a learning rate of 0.005 and a momentum of 0.9
for training the linear as well as logistic PMF models.

4.3. Training Bayesian PMF models

We initialized the Gibbs sampler by setting the model
parameters U and V to their MAP estimates obtained
by training a linear PMF model. We also set µ0 =
0, ν0 = D, and W0 to the identity matrix, for both
user and movie hyperpriors. The observation noise

precision α was fixed at 2. The predictive distribution
was computed using Eq. 10 by running the Gibbs

sampler with samples {U (k)
i , V (k)

j } collected after each
full Gibbs step.

4.4. Results

In our first experiment, we compared a Bayesian PMF
model to an SVD model, a linear PMF model, and a
logistic PMF model, all using 30D feature vectors. The
SVD model was trained to minimize the sum-squared
distance to the observed entries of the target matrix,
with no regularization applied to the feature vectors.
Note that this model can be seen as a PMF model
trained using maximum likelihood (ML). For the PMF
models, the regularization parameters λU and λV were
set to 0.002. Predictive performance of these models
on the validation set is shown in Fig. 2 (left panel).
The mean of the predictive distribution of the Bayesian
PMF model achieves an RMSE of 0.8994, compared to
an RMSE of 0.9174 of a moderately regularized linear
PMF model, an improvement of over 1.7%.

The logistic PMF model does slightly outperform its
linear counterpart, achieving an RMSE of 0.9097.
However, its performance is still considerably worse
than that of the Bayesian PMF model. A simple
SVD achieves an RMSE of about 0.9280 and after
about 10 epochs begins to overfit heavily. This ex-
periment clearly demonstrates that SVD and MAP-
trained PMF models can overfit and that the pre-
dictive accuracy can be improved by integrating out
model parameters and hyperparameters.

Hongyuan Zha (Georgia Tech) CSE 8803RS: Recommendation Systems 9 / 10



university-logo

Netflix Results
Bayesian Probabilistic Matrix Factorization using MCMC
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Figure 3. Samples from the posterior over the user and movie feature vectors generated by each step of the Gibbs
sampler. The two dimensions with the highest variance are shown for two users and two movies. The first 800 samples
were discarded as “burn-in”.

D Valid. RMSE % Test RMSE %
PMF BPMF Inc. PMF BPMF Inc.

30 0.9154 0.8994 1.74 0.9188 0.9029 1.73
40 0.9135 0.8968 1.83 0.9170 0.9002 1.83
60 0.9150 0.8954 2.14 0.9185 0.8989 2.13
150 0.9178 0.8931 2.69 0.9211 0.8965 2.67
300 0.9231 0.8920 3.37 0.9265 0.8954 3.36

Table 1. Performance of Bayesian PMF (BPMF) and lin-
ear PMF on Netflix validation and test sets.

We than trained larger PMF models with D = 40 and
D = 60. Capacity control for such models becomes a
rather challenging task. For example, a PMF model
with D = 60 has approximately 30 million parameters.
Searching for appropriate values of the regularization
coefficients becomes a very computationally expensive
task. Table 1 further shows that for the 60-dimensional
feature vectors, Bayesian PMF outperforms its MAP
counterpart by over 2%. We should also point out
that even the simplest possible Bayesian extension of
the PMF model, where Gamma priors are placed over
the precision hyperparameters αU and αV (see Fig. 1,
left panel), significantly outperforms the MAP-trained
PMF models, even though it does not perform as well

as the Bayesian PMF models.

It is interesting to observe that as the feature di-
mensionality grows, the performance accuracy for the
MAP-trained PMF models does not improve, and con-
trolling overfitting becomes a critical issue. The pre-
dictive accuracy of the Bayesian PMF models, how-
ever, steadily improves as the model complexity grows.
Inspired by this result, we experimented with Bayesian
PMF models with D = 150 and D = 300 feature
vectors. Note that these models have about 75 and
150 million parameters, and running the Gibbs sam-
pler becomes computationally much more expensive.
Nonetheless, the validation set RMSEs for the two
models were 0.8931 and 0.8920. Table 1 shows that
these models not only significantly outperform their
MAP counterparts but also outperform Bayesian PMF
models that have fewer parameters. These results
clearly show that the Bayesian approach does not re-
quire limiting the complexity of the model based on the
number of the training samples. In practice, however,
we will be limited by the available computer resources.

For completeness, we also report the performance re-
sults on the Netflix test set. These numbers were ob-
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