#### Recommender Systems Case study: Classical Examples

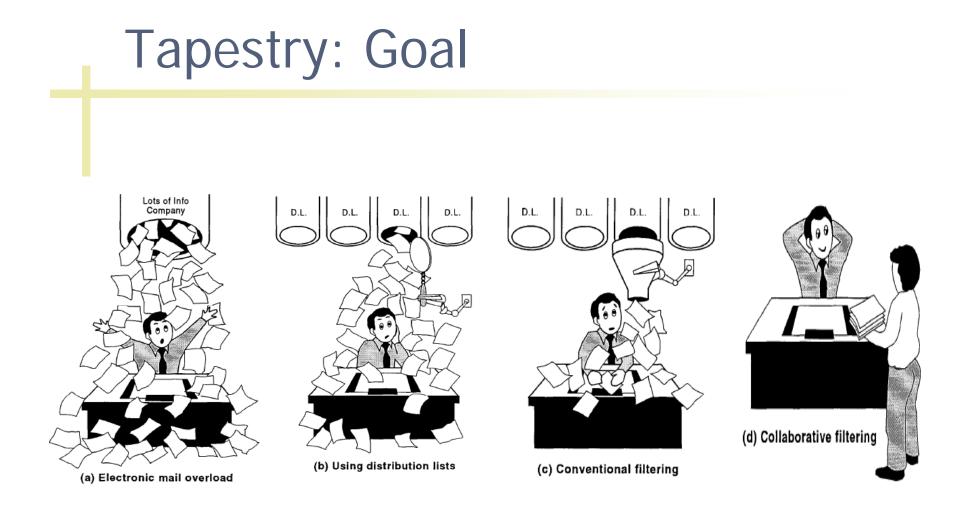
Joonseok Lee Georgia Institute of Technology 2011/01/25

#### Introduction

- 4 classic examples of Recommender Systems
  - Tapestry (ACM Communication 1992)
  - GroupLens (ACM CSCW 1994)
  - Virtual Community (CHI 1995)
  - Ringo (CHI 1995)
- Pre-Internet Era
  - Only few people used dedicated news/mail system.
- Terminologies may differ from today's Recommender system or Machine learning terminologies.

### Tapestry

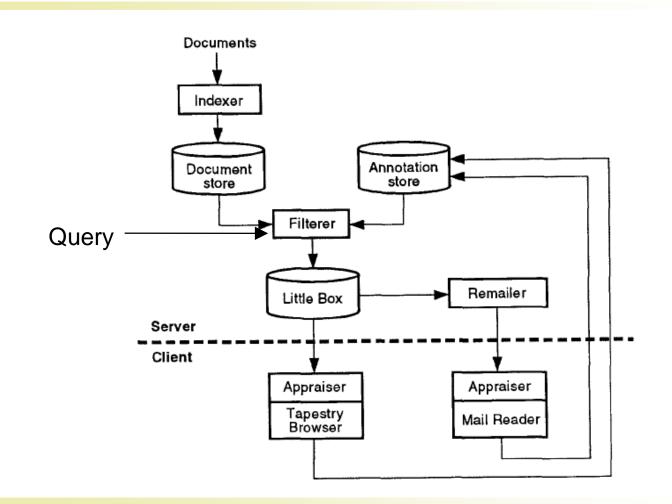
- Domain: texts like e-mail, news
- Goal: controlling flood of text information by filtering out unimportant ones.
- Collaborative Filtering definition
  - People collaborate to help one another perform filtering, by recording their reactions to documents they read.



### Tapestry: Idea

- Annotation
- DB-based, with index
- TQL (Tapestry Query Language)
- Two clients
  - Mail Reader: typical mail reader
  - Tapestry browser: annotation, filter define, TQL query

#### Tapestry: Architecture



**Georgia Tech** 

## Tapestry: Discussion

- First idea of filtering useful information, based on other users' feedback.
- Did not discuss detailed algorithm for how to find similar users, how to do personalized recommendation.

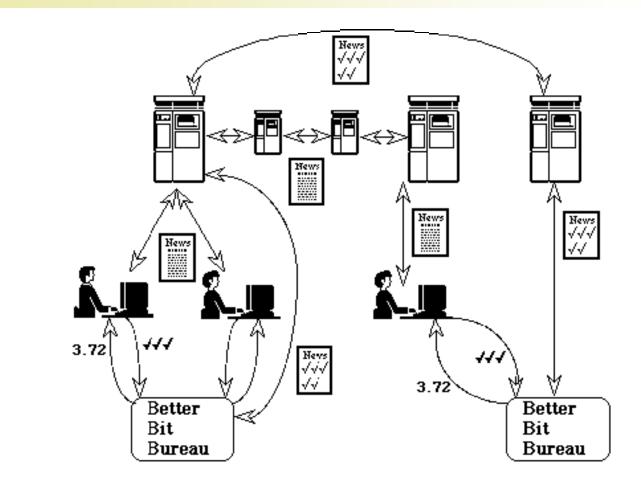
#### GroupLens

- Domain: NetNews
- Goal: enable users to predict the quality of news articles before reading it.
- Problem
  - There are large number of garbage articles, so it is becoming difficult to filter useful ones.
  - Previously, this problem was handled by manual filtering or splitting threads of articles.

### GroupLens: Approach

- User-based Collaborative Filtering
  - Find users who have similar taste with me.
  - Then, show their ratings on that article.
- Method
  - Similar user calculation: Pearson-r correlation
  - Score prediction: weighted sum of ratings from similar user
  - Score is:
    - simply displayed
    - filtered out below a threshold
    - sorted
    - graphically represented
    - A-F scale, familiar for students

#### GroupLens: Architecture



#### GroupLens: Discussion

- Social implication
  - Recommender system will reduce garbage documents.
  - Incentive problem: who's effort? and who's benefit?
- Discussed how to use calculated score, including graphical representation.

## Virtual Community

- Domain: movie
- Goal: personalized movie recommendation, based on subject ratings of others.
- HCI-perspective
  - More and more multimedia data we have, make difficult to search or recommend them, or develop user interface for such systems.

## Virtual Community: Concept

- Virtual Community
  - Community: a group of people who share characteristics and interact.
  - Virtual: in essence or effect only.
  - Virtual Community: we interact and influence others, without causing communication costs.
- Different from
  - Virtual Reality
  - Intelligent Agent

## Virtual Community: Goal

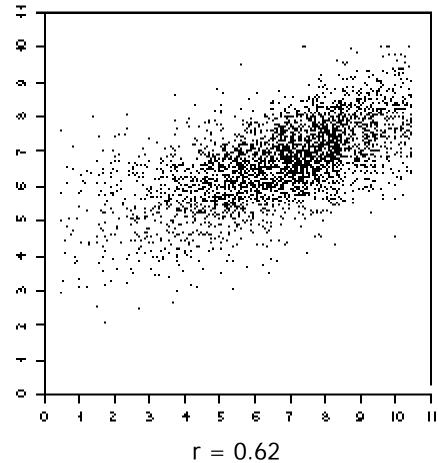
- Interface Design Goals
  - Ease of use
  - Confident recommendation
    - How much the recommendation is accurate?
  - Scalability
    - Should be able to support large amount of data.
    - With more data, better accuracy should be achieved.
  - Generalized framework
    - Not making use of domain knowledge.
    - Collaborative filtering

# Virtual Community: Method

- Database structure
  - (user, movie, score)
- I/O using E-mail
  - Rating input: form filling on an e-mail, then parsed.
  - Recommendation output: send an e-mail listing must-see movies, categorical information.
- Joint recommendation
  - Good movies for two users to see together

#### Virtual Community: Evaluation

- ML-style: train/test set validation
  - Compare the prediction and observed rating for available data.
- HCI-style: user study
  - Gather feedback from users of the system.



# Virtual Community: Discussion

- HCI-perspective
  - HCI terminologies
  - Comparison with existing HCI systems
  - HCI evaluation techniques
  - Focusing on user interface development
- No explanation on recommendation algorithms
  - How to find similar users?
  - How to predict estimated rating?

# Ringo

- Domain: music, artist
- Goal: personalized music recommendation, based on subject ratings of others.
  - Assumption: there are general trends and patterns within the taste of a person as well as between group of people.
- User-based collaborative filtering
  - Recommendation based on similarities between the interest profile of the active user and other users.
  - Overcome drawbacks of content-based filtering
    - Content parsing cost
    - No serendipitous finding
    - Unable to distinguish products with same features

## Ringo: Method

- Procedure
  - Build and maintain user profile, from their subjective rating on items.
  - Compare the profile with other users, and find ones having similar interests.
  - Find out the list of items that those similar users like.
  - **Recommend** those items.

## Ringo: Method

- Characteristics
  - Use absolute scale for rating.
    - 7 : BOOM! One of my FAVORITE few! Can't live without it.
    - 6 : Solid. They are up there.
    - 5 : Good Stuff.
    - 4 : Doesn't turn me on, doesn't bother me.
    - 3 : Eh. Not really my thing.
    - 2 : Barely tolerable.
    - 1 : Pass the earplugs.
  - Two groups of artists are included for rating request.
    - Popular artists
    - Unpopular artists
  - Users also can add new music or artists.

Ringo: Method

- Similarity calculation
  - Mean squared differences:  $\overline{(U_x U_y)^2}$

• Pearson-r correlation: 
$$\frac{\sum (U_x - \overline{U_x})(U_y - \overline{U_y})}{\sqrt{\sum (U_x - \overline{U_x})^2} \sqrt{\sum (U_y - \overline{U_y})^2}}$$

• Constrained Pearson-r correlation: 
$$\frac{\sum (U_x - 4)(U_y - 4)}{\sqrt{\sum (U_x - 4)^2} \sqrt{\sum (U_y - 4)^2}}$$

Artist-artist: item-based CF

## Ringo: Evaluation

- Evaluation criteria
  - Mean absolute error (MAE):  $|\overline{E}| = \frac{1}{N} \sum_{i=1}^{N} |\epsilon_i|$
  - Standard deviation of errors:  $\sigma =$

$$\sqrt[I]{\frac{1}{i=1}} \sqrt{\frac{\sum (E-\overline{E})^2}{N}}$$

Prediction coverage

# Ringo: Discussion

- Detailed explanation for how to implement recommendation algorithms.
- Compare user-based vs. item-based CF algorithms.
- Consider several evaluation criteria.

# Any question?



Thank you very much!