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Collaborative Prediction

Predict the unobserved entries of target matrix based on the subset of
observed entries
Problem Definition

Y is mxn matrix with m users ratings about n movies s.t. yĳ = +1 if
user i likes movie j , and yĳ = −1 if he/she dislikes it. Y is partially
observed and other entries are missing.
The main goal is to find matrix X such that it predicts the value of
its unknown entries based on the observed values and no other
external information.
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Matrix Factorization

Fit matrix X = UV T to the observed entries such that the rank of
each factor (U and V ) is low.
— Minimize the loss function versus a partially observed matrix
— Use X to predict the unobserved entries
Problems with minimizing loss over low-rank matrices
— non-convex optimization problem
— multiple local minima possible
Instead use Frobenius Norm as the regularization term
— ||X ||F =

∑
x2

ĳ = tr(XXT )
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Matrix Factorization as Linear Classification Problem

As per problem definition, classify each entry of a matrix into either 1
or -1
Suppose U is fixed, then fitting each column is a linear classification
problem
— each row of U is a feature vector
— each column of V T is a linear classifier
In collaborative prediction, both U and V are unknown.
— Learning features (rows in U) across all classifiers(columns of V T )
concurrently
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Maximum-Margin Matrix Factorization

Recall that in SVM maximizing the margin M is equivalent to
minimizing the L2 norm ||β||2 of the linear classifier.
The problem addressed here (collaborative prediction) requires to
predict U and V together.
— When U is fixed, each column of V T is SVM
— So, predicting X with maximum margin is equivalent to minimizing
the ||V ||F and ||U||F together.
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Optimization Problem and Trace norm

minimizeX=UV T (||U||2F + ||V ||2F ) + C
∑

ĳ∈S h(Yĳ ,Xĳ),
where C is a trade-off constant.
Lemma 1
||X ||∑ = minX=UV T ||U||Fro||V ||Fro = minX=UV T

1
2(||U||Fro + ||V ||Fro)

where ||X ||∑ is trace norm of X and is defined as:
||X ||∑ =

∑
|λi | = Tr(

√
XXT )

Based on the Lemma 1, we can rewrite the formulation as
minimizeX ||X ||∑ + C

∑
ĳ∈S h(Yĳ ,Xĳ),
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Proof of Lemma 1

Let X = UV T , and X = PSQT is the SVD of X with
S = diag(σ1, . . . , σN)

Let i-th row of U and V be ui and vi , respectively. Then

σi = uivT
i ≤ ‖ui‖2‖vi‖2

and
σ1 + · · ·+ σN ≤ ‖u1‖2‖v1‖2 + · · ·+ ‖uN‖2‖vN‖2

The result follows by noticing,

∑
i
‖ui‖2‖vi‖2 ≤

(∑
i
‖ui‖22

)1/2(∑
i
‖vi‖22

)1/2

= ‖U‖F‖V ‖F
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Experiments

Preliminary experiments was performed on a subset of the 100K
MovieLens Dataset, consisting of the 100 users and 100 movies with
the most ratings.
CSDP was to solve the resulting SDPs.
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Limitations

The observed entries are assumed to be uniformly sampled which is
unrealistic. For example, Users tend to rate items they like.
The current SDP solvers can only handle MMMF problems on
matrices of dimentionality of few hundreds.
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Fast Maximum Margin Matrix Factorization

A direct gradient-based optimization method for MMMF
Suitable for large collaborative prediction problems
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Fast Maximum Margin Matrix Factorization

It is shown that trace-norm is a convex function.
— minimizing the trace-norm combined with any covex loss funcion is
a convex optimization problem.
Using hinge-loss and a generalization of hinge-loss appropriate for
discrete ordinal rating, the optimization problem results as follows :
— minimize ||X ||∑ + C

∑
ĳ∈S

∑R−1
r=1 h(T r

ĳ (θr − Xĳ))

where T r
ĳ =

{
+1 for r ≥ Yĳ

−1 for r < Yĳ
Here ordinal ratings is taken into account, Yĳ ∈ 1, 2, · · · ,R. To relate
the real-valued Xĳ to discrete Yĳ , R − 1 thresholds θ1, · · · , θR−1 are
used.
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Fast MMMF Optimization Method

Original objective
— minimize||X ||∑ + C

∑
ĳ∈S h(Yĳ ,Xĳ)

— complicated and non-differentiable
— finding good descent direction is not easy
Factorized objective
— minimize 1

2(||U||2Fro + ||V ||2Fro) + C
∑

ĳ∈S h(Yĳ ,UiV T
j )

— For smooth optimization function, Smooth Hinge is used instead
of the Hinge loss.
— gradient is easy to compute, we can use gradient descent method
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Experiments

Experiments were conducted on Movielens (1M ratings) and
EachMovie(2.6M ratings) data sets.
Tests were conducted were of both types - Weak Generalization and
Strong Generalization.
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Summary

MMMF can be scaled to large problems by optimizing the Factorized
Objective
Empirical analysis shows that local minima are rare.
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