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Probabilistic Matrix Factorization

R Salakhurutdinov and A Mnih 2008
University of Toronto
Problem:

Existing CF methods could not scale to large datasets.
Existing CF methods had bad prediction accuracy for users with few
ratings.

Key idea: Bayesian methods provide natural and scalable regularization to
matrix factorization methods that improves accuracy for users with few
ratings.
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Probabilistic Matrix Factorization (PMF)

Map the possibles ratings onto [0, 1].

We can then model the rating based on latent user and item factors:

rui = g(UT
u Vi ) + ε (1)

g(x) is the logistic function 1/(1 + exp(−x)).
ε is Gaussian noise with variance σ2.

Advantages:
Natural probabilistic extension of conventional matrix factorization.
Logistic function simulates the human tendency to reserve extreme
ratings.
This formulation leads to efficient training algorithms.

Steven P. Crain (Georgia Tech) CSE 8803RS: Recommendation Systems February 8, 2011 3 / 1



university-logo

Log Likelihood
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Connection with Fast Maximum Margin Factorization

Rearranging gives the same equation as derived by Rennie and Srebo
(2005):

Minimize 12
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+
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2 ‖U‖

2
F +

λV
2 ‖V ‖

2
F (4)

Provides a probabilistic interpretation of fast maximum margin matrix
factorization.
The λ parameters can be autotuned by use of an appropriate prior in
an EM framework.
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Constrained PMF

Recall the method of writing U in terms of V :

Uu =
∑

i
IuiVi (5)

Constrained PMF generalizes this technique.
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Constrained PMF User Model

Uu = Yu +

∑
i IuiWi∑

i Iui
(6)

Motivation is to separate what we can accurately model from
peculiarities.

The fact that the user rated an item contributes to a prior for the
user’s latent profile.
Yu captures the residual peculiarities of the user’s profile.

Compare with subtracting user rating bias.
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Constrained PMF Optimization
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Provides a probabilistic interpretation of fast maximum margin matrix
factorization.
The λ parameters can be autotuned by use of an appropriate prior in
an EM framework.
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Results: Overall

PMF1: λU = 0.01, λV = 0.001; PMF2: λU = 0.001, λV = 0.0001
PMFA1: Adaptive spherical priors, diagonal covariance similar
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Results: Cold Start

Conclusions
PMF provides higher accuracy than SVD.
Autotuning performs reasonably well, though not compared to
thorough parameter search.
Cold start accuracy is not much better than using the movie average
ratings.
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Global Analytic Solution for Variational Bayesian Matrix
Factorization

S Nakajima, M Sugiyama and R Tomioka 2010
Nikon, Tokyo Institute of Technology and University of Tokyo
Problem:

Matrix factorization is normally expensive because of non-convexity.
Key idea: A variational Bayesian matrix factorization can be solved
analytically.
Important limitation: The approach requires full observations, so it cannot
be applied to partially observed ratings matrices.
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Setup

Suppose there is a rank-H L×M(L ≤ M) matrix U = BAT . Now, we get
n observations V i of U subject to Gaussian noise with variance σ2.

P(V i |A,B) = N (V i |BAT , σ2) (8)

P(V |A,B) ∝ exp
(
− 1
2σ2

∑
i
‖V i − BAT‖2F

)
(9)

We need to add some constraint to make the problem identifiable.
Since we are taking a probabilistic approach, natural constraints are
priors on A,B.

We place spherical Gaussian priors with variance cah and cbh on
columns Ah and Bh.

Even so, the dependency between A and B makes exact inference
impossible and approximate inference is expensive.
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Variational Bayesian (VB) Approach

The VB approach bounds the real optimization problem with an
approximation that is tractable.
A current approximation yields a probability distribution over possible
models, which is used to find a better approximation.
In this case, we will see that the globally best approximation can be
found analytically.
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Variational Model

We suppose that all columns of A and B are independently sampled from
Gaussian distributions with arbitrary centers and covariance matrices.

r(A,B|V ) =
∏
h
N (Ah|µah,Σah)N (Bh|µbh,Σbh) (10)

This equation can be iteratively optimized for A,B given µ,Σ and vice
versa, which is the conventional VBMF approach.
The variations σ2, c2 can also be estimated in the process for empirical
VBMF.
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A Closer Look

Explicit function to be optimized:
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Notation

V̄ =
1
n
∑

i
V i (12)

V̄ =
∑

h
γhωbhω

T
ah(by SVD) (13)

Let γ̂h be the second largest real root of

t4 + ξ3t3 + ξ2t2 + ξ1t + ξ0 (14)

ξ are analytic functions of L,M, n, γh, σ, cah and cbh. γ̃h is also defined by
another analytic function of those variables.
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Globally Optimal VB Solution

Theorem: The global VB solution can be expressed as

ÛVB =
∑

h
γ̂VB

h ωbhω
T
ah (15)

γ̂VB
h =

{
γ̂h if γh > γ̃h,
0 otherwise. (16)
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Experiments

Artificial data
Concrete slump test data from UCI
Compared against iterative VBMF.
In all cases, immediately arrived at a better solution than VBMF.
Greatly improved computational cost.
Only applicable when matrices V i are fully observed.
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