CSE 8803RS: Recommendation Systems

Matrix Factorization: Bayesian Formulations

Steven P. Crain
School of Computational Science \& Engineering
College of Computing Georgia Institute of Technology

February 8, 2011

Probabilistic Matrix Factorization

R Salakhurutdinov and A Mnih 2008
University of Toronto
Problem:

- Existing CF methods could not scale to large datasets.
- Existing CF methods had bad prediction accuracy for users with few ratings.
Key idea: Bayesian methods provide natural and scalable regularization to matrix factorization methods that improves accuracy for users with few ratings.

Probabilistic Matrix Factorization (PMF)

Map the possibles ratings onto $[0,1]$.
We can then model the rating based on latent user and item factors:

$$
\begin{equation*}
r_{u i}=g\left(U_{u}^{T} V_{i}\right)+\epsilon \tag{1}
\end{equation*}
$$

$g(x)$ is the logistic function $1 /(1+\exp (-x))$. ϵ is Gaussian noise with variance σ^{2}.

Advantages:

- Natural probabilistic extension of conventional matrix factorization.
- Logistic function simulates the human tendency to reserve extreme ratings.
- This formulation leads to efficient training algorithms.

Log Likelihood

$$
\begin{gather*}
P\left(U, V \mid R, \sigma^{2}, \sigma_{U}^{2}, \sigma_{V}^{2}\right)=\frac{P\left(R \mid U, V, \sigma^{2}\right) P\left(U \mid \sigma_{U}^{2}\right) P\left(V \mid \sigma_{V}^{2}\right)}{P(R)} \\
=\frac{\prod_{u} \prod_{i}\left[\mathcal{N}\left(R_{u i} \mid g\left(U_{u}^{T} V_{i}\right), \sigma^{2}\right)\right]_{u i}^{\prime} \Pi_{u} \mathcal{N}\left(U_{u} \mid 0, \sigma_{U}^{2} \mathbb{I}\right) \prod_{i} \mathcal{N}\left(V_{i} \mid 0, \sigma_{V}^{2} \mathbb{I}\right)}{P(R)} \\
\ln P\left(U, V \mid R, \sigma^{2}, \sigma_{U}^{2}, \sigma_{V}^{2}\right)= \tag{3}\\
-\frac{1}{2 \sigma^{2}} \sum_{u} \sum_{i} I_{u i}\left(R_{u i}-g\left(U_{u}^{T} V_{i}\right)\right)^{2}-\frac{1}{2} \sum_{u} \sum_{i} I_{u i} \ln \sigma^{2} \\
-\frac{1}{2 \sigma_{U}^{2}} \sum_{u} U_{u}^{T} U_{u}-\frac{N D}{2} \sum_{u} \ln \sigma_{U}^{2} \\
-\frac{1}{2 \sigma_{V}^{2}} \sum_{i} V_{i}^{T} V_{i}-\frac{M D}{2} \sum_{u} \ln \sigma_{V}^{2}-\ln P(R)
\end{gather*}
$$

Connection with Fast Maximum Margin Factorization

Rearranging gives the same equation as derived by Rennie and Srebo (2005):

$$
\begin{equation*}
\text { Minimize } \frac{1}{2} \sum_{u} \sum_{i} I_{u i}\left(R_{u i}-g\left(U_{u}^{T} V_{i}\right)\right)^{2}+\frac{\lambda_{U}}{2}\|U\|_{\mathcal{F}}^{2}+\frac{\lambda_{V}}{2}\|V\|_{\mathcal{F}}^{2} \tag{4}
\end{equation*}
$$

- Provides a probabilistic interpretation of fast maximum margin matrix factorization.
- The λ parameters can be autotuned by use of an appropriate prior in an EM framework.

Constrained PMF

Recall the method of writing U in terms of V :

$$
\begin{equation*}
U_{u}=\sum_{i} I_{u i} V_{i} \tag{5}
\end{equation*}
$$

- Constrained PMF generalizes this technique.

Constrained PMF User Model

$$
\begin{equation*}
U_{u}=Y_{u}+\frac{\sum_{i} I_{u i} W_{i}}{\sum_{i} I_{u i}} \tag{6}
\end{equation*}
$$

- Motivation is to separate what we can accurately model from peculiarities.
- The fact that the user rated an item contributes to a prior for the user's latent profile.
- Y_{u} captures the residual peculiarities of the user's profile.
- Compare with subtracting user rating bias.

Constrained PMF Optimization

$$
\begin{gather*}
\text { Minimize } \frac{1}{2} \sum_{u} \sum_{i} I_{u i}\left(R_{u i}-g\left(\left[Y_{u}+\frac{\sum_{i} I_{u k} W_{k}}{\sum_{k} I_{u k}}\right]^{T} V_{i}\right)\right)^{2} \tag{7}\\
+\frac{\lambda_{Y}}{2}\|Y\|_{\mathcal{F}}^{2}+\frac{\lambda_{W}}{2}\|W\|_{\mathcal{F}}^{2}+\frac{\lambda_{V}}{2}\|V\|_{\mathcal{F}}^{2}
\end{gather*}
$$

- Provides a probabilistic interpretation of fast maximum margin matrix factorization.
- The λ parameters can be autotuned by use of an appropriate prior in an EM framework.

Results: Overall

- PMF1: $\lambda_{U}=0.01, \lambda_{V}=0.001 ;$ PMF2: $\lambda_{U}=0.001, \lambda_{V}=0.0001$
- PMFA1: Adaptive spherical priors, diagonal covariance similar

Results: Cold Start

Toy Dataset

Conclusions

- PMF provides higher accuracy than SVD.
- Autotuning performs reasonably well, though not compared to thorough parameter search.
- Cold start accuracy is not much better than using the movie average ratings.

Global Analytic Solution for Variational Bayesian Matrix Factorization

S Nakajima, M Sugiyama and R Tomioka 2010
Nikon, Tokyo Institute of Technology and University of Tokyo
Problem:

- Matrix factorization is normally expensive because of non-convexity.

Key idea: A variational Bayesian matrix factorization can be solved analytically.
Important limitation: The approach requires full observations, so it cannot be applied to partially observed ratings matrices.

Setup

Suppose there is a rank- $H L \times M(L \leq M)$ matrix $U=B A^{T}$. Now, we get n observations V^{i} of U subject to Gaussian noise with variance σ^{2}.

$$
\begin{gather*}
P\left(V^{i} \mid A, B\right)=\mathcal{N}\left(V^{i} \mid B A^{T}, \sigma^{2}\right) \tag{8}\\
P(V \mid A, B) \propto \exp \left(-\frac{1}{2 \sigma^{2}} \sum_{i}\left\|V^{i}-B A^{T}\right\|_{\mathcal{F}}^{2}\right) \tag{9}
\end{gather*}
$$

- We need to add some constraint to make the problem identifiable.
- Since we are taking a probabilistic approach, natural constraints are priors on A, B.
- We place spherical Gaussian priors with variance $c_{a h}$ and $c_{b h}$ on columns A_{h} and B_{h}.
- Even so, the dependency between A and B makes exact inference impossible and approximate inference is expensive.

Variational Bayesian (VB) Approach

- The VB approach bounds the real optimization problem with an approximation that is tractable.
- A current approximation yields a probability distribution over possible models, which is used to find a better approximation.
- In this case, we will see that the globally best approximation can be found analytically.

Variational Model

We suppose that all columns of A and B are independently sampled from Gaussian distributions with arbitrary centers and covariance matrices.

$$
\begin{equation*}
r(A, B \mid V)=\prod_{h} \mathcal{N}\left(A_{h} \mid \mu_{a h}, \Sigma_{a h}\right) \mathcal{N}\left(B_{h} \mid \mu_{b h}, \Sigma_{b h}\right) \tag{10}
\end{equation*}
$$

This equation can be iteratively optimized for A, B given μ, Σ and vice versa, which is the conventional VBMF approach.
The variations σ^{2}, c^{2} can also be estimated in the process for empirical VBMF.

A Closer Look

Explicit function to be optimized:

$$
\begin{gathered}
\frac{n L M}{2} \log \sigma^{2}+\frac{1}{2} \sum_{h}\left(M \log c_{a h}^{2}-\log \left|\Sigma_{a h}\right|+\frac{\alpha_{h}}{c_{a h}^{2}}\right. \\
\left.+L \log c_{b h}^{2}-\log \left|\Sigma_{b h}\right|+\frac{\beta_{h}}{c_{b h}^{2}}\right) \\
+\frac{1}{2 \sigma^{2}} \sum_{i}\left\|V^{i}-\sum_{h} \mu_{b h} \mu_{a h}^{T}\right\|_{\mathcal{F}}^{2} \\
+\frac{n}{2 \sigma^{2}} \sum_{h}\left(\alpha_{h} \beta_{h}-\left\|\mu_{a h}\right\|^{2}\left\|\mu_{b h}\right\|^{2}\right)
\end{gathered}
$$

Notation

$$
\begin{gather*}
\bar{V}=\frac{1}{n} \sum_{i} V^{i} \tag{12}\\
\bar{V}=\sum_{h} \gamma_{h} \omega_{b h} \omega_{a h}^{T}(\text { by SVD }) \tag{13}
\end{gather*}
$$

Let $\hat{\gamma}_{h}$ be the second largest real root of

$$
\begin{equation*}
t^{4}+\xi_{3} t^{3}+\xi_{2} t^{2}+\xi_{1} t+\xi_{0} \tag{14}
\end{equation*}
$$

ξ are analytic functions of $L, M, n, \gamma_{h}, \sigma, c_{a h}$ and $c_{b h} . \tilde{\gamma}_{h}$ is also defined by another analytic function of those variables.

Globally Optimal VB Solution

Theorem: The global VB solution can be expressed as

$$
\begin{gather*}
\hat{U}^{V B}=\sum_{h} \hat{\gamma}_{h}^{V B} \omega_{b h} \omega_{a h}^{T} \tag{15}\\
\hat{\gamma}_{h}^{V B}= \begin{cases}\hat{\gamma}_{h} & \text { if } \gamma_{h}>\tilde{\gamma}_{h}, \\
0 & \text { otherwise. }\end{cases} \tag{16}
\end{gather*}
$$

Experiments

- Artificial data
- Concrete slump test data from UCI
- Compared against iterative VBMF.
- In all cases, immediately arrived at a better solution than VBMF.
- Greatly improved computational cost.
- Only applicable when matrices V^{i} are fully observed.

