CSE 8803RS: Recommendation Systems Lecture 12: Matrix Completion from a Few Entries

Liangda Li

School of Computational Science & Engineering College of Computing Georgia Institute of Technology

- Imagine that each of *m* customers watches and rates a subset of the *n* movies available through a movie rental service. This yields a dataset of customer-moive pairs (*i*, *j*) ∈ *E* ⊆ [*m*] × [*n*], and for each such pair, a rating M_{ij} ∈ *R*.
- The object is to predict the rating for the missing item of given matrice.
- The paper is interested in very large data sets, thus focus on the limit $m, n \rightarrow \infty$ with $m/n = \alpha$ bounded away from 0 and ∞ .

- Under which conditions do the known ratings provide sufficient information to infer unknown ones?
- Can this inference problem be solved efficiently?

- Assume the matrix of ratings has rank r ≪ m, n. More precisely, we denote by M the matrix whose entry (i, j) ∈ [m] × [n] corresponds to the rating user i would assign to movie j.
- We assume that there exist matrices U, of dimensions m × r, and V, of dimensions n × r, and a diagonal matrix Σ, of dimensions r × r such that

$$M = U \Sigma V^{T}$$

• Let M^E be the $m \times n$ matrix that contains the revealed entries of M, and is filled with 0's in the other positions

$$M_{i,j}^{E} = \begin{cases} M_{i,j} & \text{if}(i,j) \in E \\ 0 & \text{otherwise} \end{cases}$$

- The subset of observed entries *E* is uniformly random.
- The factors *U*, *V* are unstructured. This notion is formalized by the incoherence condition introduced by Candes and Recht [1].

- A1. There exist a constant $\mu_0 > 0$ such that for all $i \in [m]$, $j \in [n]$, we have $\sum_{k=1}^{r} U_{i,k}^2 \leq \mu_0 r$, $\sum_{k=1}^{r} V_{i,k}^2 \leq \mu_0 r$.
- A2. There exist μ_1 such that $|\sum_{k=1}^r U_{i,k} \Sigma_k V_{j,k}| \le \mu_1 r^{1/2}$.
- In particular, the incoherence condition is satisfied with high probability if U and V are uniformly random matrices with $U^T U = m\mathbf{1}$ and $V^T V = n\mathbf{1}$.

 Projection. Compute the singular value decomposition (SVD) of M^E (with σ₁ ≥ σ₂ ≥ ··· ≥ 0)

$$M^{E} = \sum_{i=1}^{\min(m,n)} \sigma_{i} x_{i} y_{i}^{T}$$

and return the matrix $T_r(M^E) = (mn/|E|) \sum_{i=1}^r \sigma_i x_i y_i^T$ obtained by setting to 0 all but the *r* largest singular values.

• Notice that, apart from the rescaling factor (mn/|E|), $T_r(M^E)$ is the orthogonal projection of M^E onto the set of rank-*r* matrices. The rescaling factor compensates the smaller average size of the entries of M^E with respect to M.

ヘロト 人間 とくほとう ほんし

- If $|E| = \Theta(n)$, this algorithm performs very poorly.
- M^E contains columns and rows with Θ(logn/loglogn) non-zero (revealed) entries. The largest singular values of M^E are of order Θ(√logn/loglogn). The corresponding singular vectors are highly concentrated on high-weight column or row indices.
- Such singular vectors are an artifact of the high-weight columns/rows and do not provide useful information about the hidden entries of *M*.

Trimming

set to zero all columns in M^E with degree larger that 2|E|/n. Set to zero all rows with degree larger than 2|E|/m (degree of a column of a row is the number of its revealed entries).

Figure 1: Histogram of the singular values of a partially revealed matrix M^E before trimming (left) and after trimming (right) for $10^4 \times 10^4$ random rank-3 matrix M with $\epsilon = 30$ and $\Sigma = diag(1, 1.1, 1.2)$. After trimming the underlying rank-3 structure becomes clear. Here the number of revealed entries per row follows a heavy tail distribution with $\mathbb{P}[N = k] = const./k^3$.

The above figure shows that trimming makes the underlying rank-3 structure much more apparent. This effect becomes even more important when the number of revealed entries per row/column follows a heavy tail distribution, as for real data.

Algorithm 1 Spectral Matrix Completion

Trim M^E , and let \tilde{M}^E be the output; Project \tilde{M}^E to $T_r(\tilde{M}^E)$; Clean residual errors by minimizing the descrepancy F(X, Y).

Cleaning

- The last step of aboving algorithm allows to reduce small discrepancies between $T_r(\tilde{M}^E)$ and M.
- Cleaning. Given $X \in \mathcal{R}^{m \times r}$, $Y \in \mathcal{R}^{n \times r}$ with $X^T X = m\mathbf{1}$ and $Y^T Y = n\mathbf{1}$, we define

$$F(X, Y) = \min_{S \in \mathcal{R}^{r \times r}} \mathcal{F}(X, Y, S)$$
$$F(X, Y, S) = \frac{1}{2} \sum_{(i,j) \in E} (M_{ij} - (XSY^T)_{ij})^2$$

- The cleaning step consists in writing $T_r(\tilde{M}^E) = X_0 S_0 Y_0^T$ and minimizing F(X, Y) locally with initial condition $X = X_0$, $Y = Y_0$.
- In geometrix terms, F is a function defined over the cartesian product of two Grassmann manifolds. Newton and conjugate gradient method
 [2] is applied to solve the problem.

Define the relative root mean square error as

$$RMSE = [\frac{1}{mnr} \|M - T_r(\tilde{M}^E)\|_F^2]^{1/2}$$

where we denote by $||A||_F$ the Frobenius norm of matrix A. Notice that the factor (1/mn) corresponds to the usual normalization by the number of entries. The factor (1/r) is instead necessary because the typical size of the entries of M is \sqrt{r} .

Main Result

Assume *M* to be a rank *r* ≤ *n*^{1/2} matrix that satisfies the incoherence condition A2. Then with high probablity

$$\frac{1}{mnr} \|M - T_r(\tilde{M}^E)\|_F^2 \le C(\alpha) \frac{nr}{|E|}$$

• Assume *M* to be a rank $r \leq n^{1/2}$ matrix that satisfies the incoherence conditions A1 and A2. Further, assume $\Sigma_{min} \leq \Sigma_1, \ldots, \Sigma_r \leq \Sigma_{max}$ with $\Sigma_{min}, \Sigma_{max}$ bounded away from 0 and ∞ . Then there exists $C'(\alpha)$ such that, if

$$|E| \leq C'(\alpha)nr\max\{logn, r\}$$

then the cleaning procedure in Spectral Matrix Completion converges, with high probability, to the matrix M.

Proof of Theorem 1

• There exists $\mathcal{C}(\alpha) < \infty$ such that, with high probability

$$\frac{1}{\sqrt{mn}} \|M - T_r(\tilde{M}^E)\|_2 \le C(\frac{r}{\epsilon})^{1/2}$$

• There exists $C(\alpha) > 0$ such that, with high probability

$$|x^{T}(\frac{\epsilon}{\sqrt{mn}}M-\tilde{M}^{E})y|\leq C\sqrt{r\epsilon}$$

for any $x \in \mathcal{R}^m$ and $y \in \mathcal{R}^n$ such that ||x|| = ||y|| = 1.

• There exists $C(\alpha) > 0$ such that, with high probability

$$\left|\frac{\sigma_q}{\epsilon} - \Sigma_q\right| \le C(\frac{r}{\epsilon})^{1/2}$$

where it is understood that $\Sigma_q = 0$ for q > r.

• Assume $\epsilon > A\max\{r \log n, r^2\}$ with A large enough. Then there exists constants $C_1, C_2, \delta > 0$ such that, wiht high probability

$$C_1 n \epsilon (d(\mathbf{x}, \mathbf{u})^2 + \|S - \Sigma\|_F^2) \le F(\mathbf{x}) \le C_2 n \epsilon d(\mathbf{x}, \mathbf{u})^2$$

for all $\mathbf{x} \in M(m, n) \cap \mathcal{K}(3\mu_0)$ such that $d(\mathbf{x}, \mathbf{u}) \leq \delta$.

• Assume $\epsilon > A \max\{r \log n, r^2\}$ with A large enough. Then there exists constants $C, \delta > 0$ such that, wiht high probability

$$\|\operatorname{grad} \tilde{F}(\mathbf{x})\|^2 \geq Cn\epsilon d(\mathbf{x}, \mathbf{u})^2$$

for all $\mathbf{x} \in M(m, n) \cap \mathcal{K}(3\mu_0)$ such that $d(\mathbf{x}, \mathbf{u}) \leq \delta$.

• Optimal RMSE with O(n) entries.

— RMSE can decays much faster with the number of observations per degree of freedom (|E|/nr).

• Threshold for exact completion.

— Prove exact reconstruction for $|E| \leq C'(\alpha)nr\log n$ for all values of r.

More general models.

— address the problem when observed entries E is far from uniformly random or the matrices are non-incoherent.

- 1 E. J. Candes and B. Recht, Exact matrix completion via convex optimization, arxiv:0805.4471, 2008.
- 2 A. Edelman, T. A. Arias, and S. T. Smith, The geometry of algorithms with orthogonality constraints, SIAM J. Matr. Anal. Appl. 20 (1999), 303[°]C353.