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Problem Definition for Matrix Completion

@ Imagine that each of m customers watches and rates a subset of the
n movies available through a movie rental service. This yields a
dataset of customer-moive pairs (i,j) € E C [m] x [n], and for each
such pair, a rating Mj; € R.

@ The object is to predict the rating for the missing item of given
matrice.

@ The paper is interested in very large data sets, thus focus on the limit
m,n — oo with m/n = o bounded away from 0 and co.
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The General Question to Address

@ Under which conditions do the known ratings provide sufficient
information to infer unknown ones?

@ Can this inference problem be solved efficiently?
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Model Definition

@ Assume the matrix of ratings has rank r < m, n. More precisely, we
denote by M the matrix whose entry (i, ) € [m] x [n] corresponds to
the rating user i would assign to movie ;.

@ We assume that there exist matrices U, of dimensions m x r, and V,
of dimensions n x r, and a diagonal matrix X, of dimensions r X r
such that

M=uUzv’

o Let ME be the m x n matrix that contains the revealed entries of M,
and is filled with Q's in the other positions

ME N M,"j lf(l,_/) €eE
W 0  otherwise
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@ The subset of observed entries E is uniformly random.

@ The factors U, V are unstructured. This notion is formalized by the
incoherence condition introduced by Candes and Recht [1].
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Incoherence property

@ Al. There exist a constant z9 > 0 such that for all i € [m], j € [n],
we have Y[y U < pior, Yjey Vi < por-
@ A2. There exist py such that |3} UixXxVji| < part/?,

@ In particular, the incoherence condition is satisfied with high
probability if U and V are uniformly random matrices with
UTU=mland VTV =nl.
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A Naive Algorithm

e Projection. Compute the singular value decomposition (SVD) of ME
(with o1 > 0p > -+ > 0)

min(m,n)

ME= 3" oy
i=1
and return the matrix T,(ME) = (mn/|E|)X}_; oix;y;" obtained by
setting to 0 all but the r largest singular values.
o Notice that, apart from the rescaling factor (mn/|E|), T,(MF) is the
orthogonal projection of ME onto the set of rank-r matrices. The

rescaling factor compensates the smaller average size of the entries of
ME with respect to M.
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Weakness in Naive Algorithm

e If |[E| = ©(n), this algorithm performs very poorly.

e ME contains columns and rows with ©(logn/loglogn) non-zero
(revealed) entries. The largest singular values of ME are of order

©(+/logn/loglogn). The corresponding singular vectors are highly
concentrated on high-weight column or row indices.

@ Such singular vectors are an artifact of the high-weight columns/rows
and do not provide useful information about the hidden entries of M.
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Trimming

set to zero all columns in ME with degree larger that 2|E|/n. Set to zero

all rows with degree larger than 2|E|/m (degree of a column of a row is
the number of its revealed entries).

y H
=

Figure 1: Histogram of the singular values of a partially revealed matrix A% before trimming (left) and after
trimming (right) for 104 x 10* random rank-3 matrix M with € = 30 and ¥ = diag(1,1.1,1.2). After trimming

the underlying rank-3 structure becomes clear. Here the number of revealed entries per row follows a heavy
tail distribution with P{N = k} = const./k5.

The above figure shows that trimming makes the underlying rank-3
structure much more apparent. This effect becomes even more important
when the number of revealed entries per row/column follows a heavy tail

distribution, as for real data.
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Proposed Algorithm

Algorithm 1 Spectral Matrix Completion
Trim ME, and let ME be the output;
Project ME to T,(MFE);
Clean residual errors by minimizing the descrepancy F(X, Y).
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@ The last step of aboving algorithm allows to reduce small
discrepancies between T,(ME) and M.

o Cleaning. Given X € R™*", Y € R™" with XT X = m1 and
YTY = nl, we define

F(X, Y) = minSGRrw]—"(X, Y, S)

1
F(X? Y, 5) = 2 Z (MIJ - (XSYT)U)2
(iJ)eE
@ The cleaning step consists in writing T,(ME) = XoSo YOT and
minimizing F (X, Y) locally with initial condition X = Xp, Y = Y.
@ In geometrix terms, F is a function defined over the cartesian product
of two Grassmann manifolds. Newton and conjugate gradient method
[2] is applied to solve the problem.
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Evaluation

Define the relative root mean square error as
1 .
RMSE = [—||M — T,(MF)|[2]*/
[ |IM = T(W5)|]
where we denote by ||Al|¢ the Frobenius norm of matrix A. Notice that
the factor (1/mn) corresponds to the usual normalization by the number

of entries. The factor (1/r) is instead necessary because the typical size of
the entries of M is \/r.
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Main Result

@ Assume M to be a rank r < n'/2 matrix that satisfies the incoherence

condition A2. Then with high probablity

nr

1 v1EN 12
M- <
o IM = B < Co)

@ Assume M to be a rank r < n/2 matrix that satisfies the incoherence
conditions Al and A2. Further, assume % in < Xq1,..., %, < ¥ pax
with ¥ in, X max bounded away from 0 and co. Then there exists

C'(a) such that, if
|E| < C'(a)nrmax{logn, r}

then the cleaning procedure in Spectral Matrix Completion
converges, with high probability, to the matrix M.
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Proof of Theorem 1

@ There exists C(«) < oo such that, with high probability
M ()] < (D)2
v/ mn ’ 2= €

@ There exists C(«) > 0 such that, with high probability

€ 1E
- M- < Cy
\/ﬁl\/l M=)y| < Cy/re

for any x € R™ and y € R" such that ||x|| = ||y|| = 1.
@ There exists C(c) > 0 such that, with high probability

" (

r
=T = T4l < C()M?

€ €

where it is understood that ¥4 = 0 for g > r.
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Proof of Theorem 2

o Assume ¢ > Amax{rlogn, r?} with A large enough. Then there exists
constants (i, (5,6 > 0 such that, wiht high probability

Cine(d(x,u)® + ||S — X|%) < F(x) < Coned(x,u)?

for all x € M(m, n) N KC(3po) such that d(x,u) < 4.

e Assume ¢ > Amax{rlogn, r?} with A large enough. Then there exists
constants C,d > 0 such that, wiht high probability

lgradF (x)||? > Cned(x, u)?

for all x € M(m, n) N KC(3uo) such that d(x,u) <6
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Future Directions

e Optimal RMSE with O(n) entries.
— RMSE can decays much faster with the number of observations
per degree of freedom (|E|/nr).

@ Threshold for exact completion.
— Prove exact reconstruction for |E| < C'(a)nrlogn for all values of
r.

@ More general models.
— address the problem when observed entries E is far from uniformly
random or the matrices are non-incoherent.
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