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Problem Definition for Matrix Completion

Imagine that each of m customers watches and rates a subset of the
n movies available through a movie rental service. This yields a
dataset of customer-moive pairs (i , j) ∈ E ⊆ [m]× [n], and for each
such pair, a rating Mĳ ∈ R.
The object is to predict the rating for the missing item of given
matrice.
The paper is interested in very large data sets, thus focus on the limit
m, n→∞ with m/n = α bounded away from 0 and ∞.
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The General Question to Address

Under which conditions do the known ratings provide sufficient
information to infer unknown ones?
Can this inference problem be solved efficiently?
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Model Definition

Assume the matrix of ratings has rank r � m, n. More precisely, we
denote by M the matrix whose entry (i , j) ∈ [m]× [n] corresponds to
the rating user i would assign to movie j .
We assume that there exist matrices U, of dimensions m × r , and V ,
of dimensions n × r , and a diagonal matrix Σ, of dimensions r × r
such that

M = UΣV T

Let ME be the m × n matrix that contains the revealed entries of M,
and is filled with 0’s in the other positions

ME
i ,j =

{
Mi ,j if(i , j) ∈ E
0 otherwise
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Assumptions

The subset of observed entries E is uniformly random.
The factors U, V are unstructured. This notion is formalized by the
incoherence condition introduced by Candes and Recht [1].
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Incoherence property

A1. There exist a constant µ0 > 0 such that for all i ∈ [m], j ∈ [n],
we have

∑r
k=1 U2

i ,k ≤ µ0r ,
∑r

k=1 V 2
i ,k ≤ µ0r .

A2. There exist µ1 such that |
∑r

k=1 Ui ,kΣkVj,k | ≤ µ1r1/2.
In particular, the incoherence condition is satisfied with high
probability if U and V are uniformly random matrices with
UT U = m1 and V T V = n1.
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A Naive Algorithm

Projection. Compute the singular value decomposition (SVD) of ME

(with σ1 ≥ σ2 ≥ · · · ≥ 0)

ME =

min(m,n)∑
i=1

σixiyT
i

and return the matrix Tr (ME ) = (mn/|E |)
∑r

i=1 σixiyT
i obtained by

setting to 0 all but the r largest singular values.
Notice that, apart from the rescaling factor (mn/|E |), Tr (ME ) is the
orthogonal projection of ME onto the set of rank-r matrices. The
rescaling factor compensates the smaller average size of the entries of
ME with respect to M.
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Weakness in Naive Algorithm

If |E | = Θ(n), this algorithm performs very poorly.
ME contains columns and rows with Θ(logn/loglogn) non-zero
(revealed) entries. The largest singular values of ME are of order
Θ(
√

logn/loglogn). The corresponding singular vectors are highly
concentrated on high-weight column or row indices.
Such singular vectors are an artifact of the high-weight columns/rows
and do not provide useful information about the hidden entries of M.
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Trimming
set to zero all columns in ME with degree larger that 2|E |/n. Set to zero
all rows with degree larger than 2|E |/m (degree of a column of a row is
the number of its revealed entries).

The above figure shows that trimming makes the underlying rank-3
structure much more apparent. This effect becomes even more important
when the number of revealed entries per row/column follows a heavy tail
distribution, as for real data.
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Proposed Algorithm

Algorithm 1 Spectral Matrix Completion
Trim ME , and let M̃E be the output;
Project M̃E to Tr (M̃E );
Clean residual errors by minimizing the descrepancy F (X ,Y ).
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Cleaning

The last step of aboving algorithm allows to reduce small
discrepancies between Tr (M̃E ) and M.
Cleaning. Given X ∈ Rm×r , Y ∈ Rn×r with XT X = m1 and
Y T Y = n1, we define

F (X ,Y ) = minS∈Rr×rF(X ,Y , S)

F (X ,Y , S) =
1
2
∑

(i ,j)∈E
(Mĳ − (XSY T )ĳ)2

The cleaning step consists in writing Tr (M̃E ) = X0S0Y T
0 and

minimizing F (X ,Y ) locally with initial condition X = X0, Y = Y0.
In geometrix terms, F is a function defined over the cartesian product
of two Grassmann manifolds. Newton and conjugate gradient method
[2] is applied to solve the problem.
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Evaluation

Define the relative root mean square error as

RMSE = [
1

mnr ‖M − Tr (M̃E )‖2F ]1/2

where we denote by ‖A‖F the Frobenius norm of matrix A. Notice that
the factor (1/mn) corresponds to the usual normalization by the number
of entries. The factor (1/r) is instead necessary because the typical size of
the entries of M is

√
r .
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Main Result

Assume M to be a rank r ≤ n1/2 matrix that satisfies the incoherence
condition A2. Then with high probablity

1
mnr ‖M − Tr (M̃E )‖2F ≤ C(α)

nr
|E |

Assume M to be a rank r ≤ n1/2 matrix that satisfies the incoherence
conditions A1 and A2. Further, assume Σmin ≤ Σ1, . . . ,Σr ≤ Σmax
with Σmin, Σmax bounded away from 0 and ∞. Then there exists
C ′(α) such that, if

|E | ≤ C ′(α)nrmax{logn, r}

then the cleaning procedure in Spectral Matrix Completion
converges, with high probability, to the matrix M.
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Proof of Theorem 1

There exists C(α) <∞ such that, with high probability

1√
mn‖M − Tr (M̃E )‖2 ≤ C(

r
ε

)1/2

There exists C(α) > 0 such that, with high probability

|xT (
ε√
mnM − M̃E )y | ≤ C

√
rε

for any x ∈ Rm and y ∈ Rn such that ‖x‖ = ‖y‖ = 1.
There exists C(α) > 0 such that, with high probability

|σq
ε
− Σq| ≤ C(

r
ε

)1/2

where it is understood that Σq = 0 for q > r .

Liangda Li (Georgia Tech) CSE 8803RS: Recommendation Systems 14 / 17



university-logo

Proof of Theorem 2

Assume ε > Amax{r logn, r2} with A large enough. Then there exists
constants C1,C2, δ > 0 such that, wiht high probability

C1nε(d(x,u)2 + ‖S − Σ‖2F ) ≤ F (x) ≤ C2nεd(x,u)2

for all x ∈ M(m, n) ∩ K(3µ0) such that d(x,u) ≤ δ.
Assume ε > Amax{r logn, r2} with A large enough. Then there exists
constants C , δ > 0 such that, wiht high probability

‖gradF̃ (x)‖2 ≥ Cnεd(x,u)2

for all x ∈ M(m, n) ∩ K(3µ0) such that d(x,u) ≤ δ.
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Future Directions

Optimal RMSE with O(n) entries.
— RMSE can decays much faster with the number of observations
per degree of freedom (|E |/nr).
Threshold for exact completion.
— Prove exact reconstruction for |E | ≤ C ′(α)nr logn for all values of
r .
More general models.
— address the problem when observed entries E is far from uniformly
random or the matrices are non-incoherent.
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