CSE 8803RS: Recommendation Systems

Lecture 13: Robust Principal Componet Analysis?

Liangda Li
School of Computational Science \& Engineering College of Computing
Georgia Institute of Technology

The General Question to Address

- For a data matrix which is the superposition of a low-rank component and a sparse component, can we recover each component individually?

Model Definition

- Suppose we are given a large data matrix M, and know that it may be decomposed as

$$
M=L_{0}+S_{0}
$$

where L_{0} has low-rank and S_{0} is sparse.

- Principal Component Analysis seek the best rank- k estimate of L_{0} by solving

$$
\begin{aligned}
& \operatorname{minimize}\|M-L\| \\
& \text { subject to } \operatorname{rank}(L) \leq k
\end{aligned}
$$

Throughout the paper, $\|M\|$ denotes the 2-norm; that is, the largest singular value of M.

A Surprising Message

- Principal Component Pursuit(PCP)

Let $\|M\|_{*}=\sum_{i} \sigma_{i}(M)$ denote the nuclear norm of the matrix M, and $\|M\|_{1}=\sum_{i j}\left|M_{i j}\right|$ denote the I_{1} norm of M.

$$
\begin{aligned}
& \operatorname{minimize}\|L\|_{*}+\lambda\|S\|_{1} \\
& \text { subject to } L+S=M
\end{aligned}
$$

Assumptions

- The subset of observed entries Ω is uniformly random.
- With the singular value decomposition of L_{0} as

$$
L_{0}=U \Sigma V^{*}=\sum_{i=1}^{r} \sigma_{i} u_{i} v_{i}^{*}
$$

The factors U, V satisfy incoherence condition

$$
\max _{i}\left\|U^{*} e_{i}\right\|^{2} \leq \frac{\mu r}{n_{1}}, \max _{i}\left\|V^{*} e_{i}\right\|^{2} \leq \frac{\mu r}{n_{2}}
$$

and

$$
\left\|U V^{*}\right\|_{\infty} \leq \sqrt{\frac{\mu r}{n_{1} n_{2}}}
$$

Here and below, $\|M\|_{\infty}=\max _{i, j}\left|M_{i j}\right|$

- Ensure that low-rank matrix and sparse matrix can be distinguished.

Main Result

- Define $n_{(1)}=\max \left(n_{1}, n_{2}\right)$, and $n_{(2)}=\min \left(n_{1}, n_{2}\right)$.
- Suppose L_{0} is $n \times n$, and the support set of S_{0} is uniformly distributed among all sets of cardinality m. Then there is a numerical constant c such that with probability at least $1-c n^{-10}$, Principal Component Pursuit with $\lambda=1 / \sqrt{n}$ is exact, i.e. $\hat{L}=L_{0}$ and $\hat{S}=S_{0}$, provided that

$$
\operatorname{rank}\left(L_{0}\right) \leq \rho_{r} n \mu^{-1}(\log n)^{-2} \quad \text { and } \quad m \leq \rho_{s} n^{2}
$$

Above, ρ_{r} and ρ_{s} are positive numerical constants.

- In the general rectangular case where L_{0} is $n_{1} \times n_{2}$, PCP with $\lambda=1 / \operatorname{sqrtn}_{(1)}$ succeeds with probability at least $1-c n_{(1)}^{-10}$, provided that $\operatorname{rank}\left(L_{0}\right) \leq \rho_{r} n_{(2)} \mu^{-1}\left(\log n_{(1)}\right)^{-2}$ and $m \leq \rho_{s} n_{1} n_{2}$.

Implications for Matrix Completion from Grossly Corrupted Data

- Let \mathcal{P}_{Ω} be the orthogonal projection onto the linear space of matrices supported on $\Omega \subset[n 1] \times[n 2]$,

$$
\mathcal{P}_{\Omega} X=\left\{\begin{array}{cc}
X_{i j} & (i, j) \in \Omega \\
0 & \text { otherwise }
\end{array}\right.
$$

- Imagine we only have available a few entries of $L_{0}+S_{0}$, which we conveniently write as

$$
Y=\mathcal{P}_{\Omega_{\text {obs }}}\left(L_{0}+S_{0}\right)=\mathcal{P}_{\Omega_{\text {obs }}} L_{0}+S_{0}^{\prime}
$$

we propose recovering L_{0} by solving the following problem: Principal Component Pursuit

$$
\begin{aligned}
& \operatorname{minimize}\|L\|_{*}+\lambda\|S\|_{1} \\
& \text { subject to } \mathcal{P}_{\Omega_{\text {obs }}}(L+S)=Y
\end{aligned}
$$

Corresponding Result

- Suppose L_{0} is $n \times n$, and $\Omega_{o b s}$ is uniformly distributed among all sets of cardinality m obeying $m=0.1 n^{2}$. Suppose for simplicity, that each observed entry is corrupted with probability τ independently of the others. Then there is a numerical constant c such that with probability at least $1-c n^{-10}$, Principal Component Pursuit with $\lambda=1 / \sqrt{0.1 n}$ is exact, i.e. $\hat{L}=L_{0}$, provided that

$$
\operatorname{rank}\left(L_{0}\right) \leq \rho_{r} n \mu^{-1}(\log n)^{-2} \quad \text { and } \quad \tau \leq \tau_{s}
$$

Above, ρ_{r} and τ_{s} are positive numerical constants.

- In the general rectangular case where L_{0} is $n_{1} \times n_{2}$, PCP with $\lambda=1 / \sqrt{0.1 n_{(1)}}$ succeeds from $m=0.1 n_{1} n_{2}$ corrupted entries with probability at least $1-c n_{(1)}^{-10}$, provided that $\operatorname{rank}\left(L_{0}\right) \leq \rho_{r} n_{(2)} \mu^{-1}\left(\log n_{(1)}\right)^{-2}$.

Exact Recovery from Varying Fractions of Error

Dimension n $\operatorname{rank}\left(L_{0}\right)$ $\left\\|S_{0}\right\\|_{0}$ $\operatorname{rank}(\hat{L})$ $\\|\hat{S}\\|_{0}$ $\frac{\left\\|\hat{L}-L_{0}\right\\|_{F}}{L_{0} \\|_{F}}$ \# SVD Time(s) 500 25 12,500 25 12,500 1.1×10^{-6} 16 2.9 1,000 50 50,000 50 50,000 1.2×10^{-6} 16 12.4 2,000 100 200,000 100 200,000 1.2×10^{-6} 16 61.8 3,000 250 450,000 250 450,000 2.3×10^{-6} 15 185.2 $\operatorname{rank}\left(L_{0}\right)=0.05 \times n,\left\\|S_{0}\right\\|_{0}=0.05 \times n^{2}$ Dimension n $\operatorname{rank}\left(L_{0}\right)$ $\left\\|S_{0}\right\\|_{0}$ $\operatorname{rank}(\hat{L})$ $\\|\hat{S}\\|_{0}$ $\frac{\left\\|\hat{L}-L_{0}\right\\|_{F}}{\left\\|L_{0}\right\\|_{F}}$ \# SVD Time (s) 500 25 25,000 25 25,000 1.2×10^{-6} 17 4.0 1,000 50 100,000 50 100,000 2.4×10^{-6} 16 13.7 2,000 100 400,000 100 400,000 2.4×10^{-6} 16 64.5 3,000 150 900,000 150 900,000 2.5×10^{-6} 16 191.0

Table 1: Correct recovery for random problems of varying size. Here, $L_{0}=X Y^{*} \in \mathbb{R}^{n \times n}$ with $X, Y \in \mathbb{R}^{n \times r} ; X, Y$ have entries i.i.d. $\mathcal{N}(0,1 / n), S_{0} \in\{-1,0,1\}^{n \times n}$ has support chosen uniformly at random and independent random signs; $\left\|S_{0}\right\|_{0}$ is the number of nonzero entries in S_{0}. Top: recovering matrices of rank $0.05 \times n$ from 5% gross errors. Bottom: recovering matrices of rank $0.05 \times n$ from 10% gross errors. In all cases, the rank of L_{0} and ℓ_{0}-norm of S_{0} are correctly estimated. Moreover, the number of partial singular value decompositions (\# SVD) required to solve PCP is almost constant.

> Notice that in all cases, solving the convex PCP gives a result (L, S) with the correct rank and sparsity. Moreover, the relative error $\left\|L-L_{0}\right\|_{F} /\|L 0\|_{F}$ is small, less than 10^{-5} in all examples considered.

Phase Transition in Rank and Sparsity

(a) Robust PCA, Random Signs

(b) Robust PCA, Coherent Signs

(c) Matrix Completion

Figure 1: Correct recovery for varying rank and sparsity. Fraction of correct recoveries across 10 trials, as a function of $\operatorname{rank}\left(L_{0}\right)$ (x-axis) and sparsity of S_{0} (y -axis). Here, $n_{1}=n_{2}=$ 400. In all cases, $L_{0}=X Y^{*}$ is a product of independent $n \times r$ i.i.d. $\mathcal{N}(0,1 / n)$ matrices. Trials are considered successful if $\left\|\hat{L}-L_{0}\right\|_{F} /\left\|L_{0}\right\|_{F}<10^{-3}$. Left: low-rank and sparse decomposition, $\operatorname{sgn}\left(S_{0}\right)$ random. Middle: low-rank and sparse decomposition, $S_{0}=\mathcal{P}_{\Omega} \operatorname{sgn}\left(L_{0}\right)$. Right: matrix completion. For matrix completion, ρ_{s} is the probability that an entry is omitted from the observation.

Notice that there is a large region in which the recovery is exact. This highlights an interesting aspect of our result: the recovery is correct even though in some cases $\left\|S_{0}\right\|_{F} \gg\left\|L_{0}\right\|_{F}$.

Background Modeling from Surveillance Video

(a) Original frames

(b) Low-rank \hat{L}

(c) Sparse \hat{S}

Convex optimization (this work)

(d) Low-rank \hat{L}

(e) Sparse \hat{S} Alternating minimization [47]

Figure 2: Background modeling from video. Three frames from a 200 frame video sequence taken in an airport [32]. (a) Frames of original video M. (b)-(c) Low-rank \hat{L} and sparse components \hat{S} obtained by PCP, (d)-(e) competing approach based on alternating minimization of an m-estimator [47]. PCP yields a much more appealing result despite using less prior lmnxulndm

Background Modeling from Surveillance Video-cont.

(a) Original frames

(b) Low-rank \hat{L}

(c) Sparse \hat{S} Convex optimization (this work)

(d) Low-rank \hat{L}
(e) Sparse \hat{S}

Alternating minimization [47]

Figure 3: Background modeling from video. Three frames from a 250 frame sequence taken in a lobby, with varying illumination [32]. (a) Original video M. (b)-(c) Low-rank \hat{L} and sparse \hat{S} obtained by PCP. (d)-(e) Low-rank and sparse components obtained by a competing approach based on alternating minimization of an m-estimator [47]. Again, convex programming yields a more appealing result despite using less prior information.

Removing Shadows and Specularities from Face Images

Figure 4：Removing shadows，specularities，and saturations from face images．（a）Cropped and aligned images of a person＇s face under different illuminations from the Extended Yale B database．The size of each image is 192×168 pixels，a total of 58 different illuminations were used for each person．（b）Low－rank approximation \hat{L} recovered by convex programming． （c）Sparse error \hat{S} corresponding to specularities in the eyes，shadows around the nose region， or brightness saturations on the face．Notice in the bottom left that the sparse term also compensates for errors in image acquisition．

Architecture of the Proof

- Any subgradient of the I_{1} norm at S_{0} supported on Ω, is of the form

$$
\operatorname{sgn}\left(S_{0}\right)+F
$$

where F vanishes on Ω, i.e. $\mathcal{P}_{\Omega} F=0$, and obeys $\|F\|_{\infty} \leq 1$.

- Any subgradient of the nuclear norm at L_{0} is of the form

$$
U V^{*}+W
$$

where $U^{*} W=0, W V=0$ and $\|W\| \leq 1$. Denote by T the linear space of matrices

$$
T=\left\{U X^{*}+Y V^{*}, X, T \in \mathcal{R}^{n \times r}\right\}
$$

and by T^{\perp} its orthogonal complement.

An Elimination Theorem

- We will say that S^{\prime} is a trimmed version of S if $\operatorname{supp}\left(S^{\prime}\right) \subset \operatorname{supp}(S)$ and $S_{i j}^{\prime}=S_{i j}$ whenever $S_{i j}^{\prime} \neq 0$.
- Suppose the solution to PCP with input data $M_{0}=L_{0}+S_{0}$ is unique and exact, and consider $M_{0}^{\prime}=L_{0}+S_{0}^{\prime}$, where S_{0}^{\prime} is a trimmed version of S_{0}. Then the solution to PCP with input M_{0}^{\prime} is exact as well.
- The Bernoulli model
$\Omega=\left\{(i ; j): \delta_{i j}=1\right\}$, where the $\Omega_{i j}$'s are i.i.d. variables Bernoulli taking value one with probability ρ and zero with probability $1-\rho$, so that the expected cardinality of Ω is ρn^{2}. From now on, we will write $\Omega \sim \operatorname{Ber}(\rho)$ as a shorthand for Ω is sampled from the Bernoulli model with parameter ρ.

Derandomization

- Suppose L_{0} obeys the conditions and that the locations of the nonzero entries of S_{0} follow the Bernoulli model with parameter $2 \rho_{s}$, and the signs of S_{0} are i.i.d. ± 1 as above (and independent from the locations). Then if the PCP solution is exact with high probability, then it is also exact with at least the same probability for the model in which the signs are fixed and the locations are sampled from the Bernoulli model with parameter ρ_{s}.

Dual Certificates

- Assume that $\left\|\mathcal{P}_{\Omega} \mathcal{P}_{T}\right\|<1$. With the standard notations, $\left(L_{0}, S_{0}\right)$ is the unique solution of there is a pair (W, F) obeying

$$
U V^{*}+W=\lambda\left(\operatorname{sgn}\left(S_{0}\right)+F\right)
$$

with $\mathcal{P}_{T} W=0,\|W\|<1, \mathcal{P}_{\Omega} F=0$ and $\|F\|_{\infty}<1$.

- Assume that $\left\|\mathcal{P}_{\Omega} \mathcal{P}_{T}\right\|<1 / 2$ and $\lambda<1$. With the standard notations, $\left(L_{0}, S_{0}\right)$ is the unique solution of there is a pair (W, F) obeying

$$
U V^{*}+W=\lambda\left(\operatorname{sgn}\left(S_{0}\right)+F+\mathcal{P}_{\Omega} D\right)
$$

with $\mathcal{P}_{T} W=0,\|W\|<1 / 2, \mathcal{P}_{\Omega} F=0$ and $\|F\|_{\infty}<1 / 2$, and $\left\|P_{\Omega} D\right\|_{F} \leq 1 / 4$.

- (a) $W \in T^{\perp}$; (b) $\|W\|<1 / 2$; (c)
$\| P_{\Omega}\left(U V^{*}-\lambda \operatorname{sgn}\left(S_{0}\right)+W \|_{F} \leq \lambda / 4 ;(\right.$ d $)\left\|P_{\Omega^{\perp}}\left(U V^{*}+W\right)\right\|_{\infty} \leq \lambda / 2$.

Dual Certification via the Golfing Scheme

- We propose constructing a dual certificate

$$
W=W^{L}+W^{S}
$$

- Construction of W^{L} via the golfing scheme.

For an integer $j_{0} \geq 1$, and let $\Omega_{j}, 1 \leq j \leq j_{0}$, be defined so that $\Omega^{c}=\cup_{1 \leq j \leq j_{0}} \Omega_{j}$. Then starting with $Y_{0}=0$, inductively define

$$
Y_{j}=Y_{j-1}+q^{-1} \mathcal{P}_{\Omega_{j}} \mathcal{P}_{T}\left(U V^{*}-Y_{j-1}\right)
$$

and set

$$
W^{L}=\mathcal{P}_{T^{\perp}} Y_{j_{0}}
$$

- Construction of W^{S} via the method of least squares.

Assume that $\left\|\mathcal{P}_{\Omega} \mathcal{P}_{T}\right\|<1 / 2$. Then $\left\|\mathcal{P}_{\Omega} \mathcal{P}_{T} \mathcal{P}_{\Omega}\right\|<1 / 4$, and thus the operator $\mathcal{P}_{\Omega}-\mathcal{P}_{\Omega} \mathcal{P}_{T} \mathcal{P}_{\Omega}$ mapping Ω onto itself is invertible. Set

$$
W^{S}=\lambda \mathcal{P}_{\Omega_{\perp}}\left(\mathcal{P}_{\Omega}-\mathcal{P}_{\Omega} \mathcal{P}_{T} \mathcal{P}_{\Omega}\right)^{-1} \operatorname{sgn}\left(S_{0}\right)
$$

- (a) $\left\|W^{L}+W^{S}\right\|<1 / 2$; (b) $\| P_{\Omega}\left(U V^{*}+W^{L} \|_{F} \leq \lambda / 4\right.$; (c) $\left\|P_{\Omega^{\perp}}\left(U V^{*}+W^{L}+W^{S}\right)\right\|_{\infty} \leq \lambda / 2$.

Key Lemmas

- Suppose Ω_{0} is sampled from the Bernoulli model with parameter ρ_{0}. Then with high probability,

$$
\left\|\mathcal{P}_{T}-\rho_{0}^{-1} \mathcal{P}_{T} \mathcal{P}_{\Omega_{0}} \mathcal{P}_{T}\right\| \leq \epsilon
$$

provided that $\rho_{0} \geq C_{0} \epsilon^{-2} \frac{\mu r \log n}{n}$ for some numerical constant $C_{0}>0$. For rectangular matrices, we need $\rho_{0} \geq C_{0} \epsilon^{-2} \frac{\mu r \log n_{(1)}}{n_{(2)}}$.

- Assume that $\Omega \sim \operatorname{Ber}(\rho)$, then $\left\|\mathcal{P}_{\Omega} \mathcal{P}_{T}\right\|^{2} \leq \rho+\epsilon$, provided that $1-\rho \geq C_{0} \epsilon^{-2} \frac{\mu r \log n}{n}$.
- Assume that $\Omega \sim \operatorname{Ber}(\rho)$ with parameter $\rho \leq \rho_{s}$ for some $\rho_{s}>0$. Set $j_{0}=2\lceil\log n\rceil$. Then the matrix W^{L} obeys
(a) $\left\|W^{L}\right\|<1 / 4$,
(b) $\left\|\mathcal{P}_{\Omega}\left(U V^{*}+W^{L}\right)\right\|_{F}<\lambda / 4$,
(c) $\left\|\mathcal{P}_{\Omega^{\perp}}\left(U V^{*}+W^{L}\right)\right\|_{\infty}<\lambda / 4$.
- Assume that S_{0} is supported on set Ω, and that the signs of S_{0} are i.i.d. symmetric. Then the matrix W^{S} obeys
(a) $\left\|W^{S}\right\|<1 / 4$, (b) $\left\|\mathcal{P}_{\Omega^{\perp}} W^{S}\right\|_{\infty}<\lambda / 4$.

Algorithm for Principal Component Pursuit

The PCP problem is solved using an augmented Lagrange multiplier (ALM) algorithm, which operates on the augmented Lagrangian

$$
I(L, S, Y)=\|L\|_{*}+\lambda\|S\|_{1}+<Y, M-L-S>+\frac{\mu}{2}\|M-L-S\|_{F}^{2}
$$

Let \mathcal{S}_{τ} denote the shrinkage operator $\mathcal{S}_{\tau}[x]=\operatorname{sgn}(x) \max (|x|-\tau, 0)$, and
$\mathcal{D}_{\tau}(X)$ denote the singular value thresholding operator given by $\mathcal{D}_{\tau}(X)=U \mathcal{S}_{\tau}(\Sigma) V^{*}$, where $X=U \Sigma V^{*}$ is any singular value decompositon, we propose algorithm as below:

Algorithm 1 Principal Component Pursuit by Alternating Directions
initialize: $S_{0}=Y_{0}=0, \mu>0$.
while not converged do
compute $L_{k+1}=\mathcal{D}_{\mu^{-1}}\left(M-S_{k}+\mu^{-1} Y_{k}\right)$;
compute $S_{k+1}=\mathcal{S}_{\lambda \mu^{-1}}\left(M-L_{k+1}+\mu^{-1} Y_{k}\right)$;
compute $Y_{k+1}=Y_{k}+\mu\left(M-L_{k+1}-S_{k+1}\right)$;
end while

