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The General Question to Address

For a data matrix which is the superposition of a low-rank component
and a sparse component, can we recover each component individually?
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Model Definition

Suppose we are given a large data matrix M, and know that it may be
decomposed as

M = L0 + S0

where L0 has low-rank and S0 is sparse.
Principal Component Analysis
seek the best rank-k estimate of L0 by solving

minimize‖M − L‖
subject to rank(L) ≤ k

Throughout the paper, ‖M‖ denotes the 2-norm; that is, the largest
singular value of M.
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A Surprising Message

Principal Component Pursuit(PCP)
Let ‖M‖∗ =

∑
i σi (M) denote the nuclear norm of the matrix M, and

‖M‖1 =
∑

ĳ |Mĳ | denote the l1 norm of M.

minimize‖L‖∗ + λ‖S‖1
subject to L + S = M
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Assumptions

The subset of observed entries Ω is uniformly random.
With the singular value decomposition of L0 as

L0 = UΣV ∗ =
r∑

i=1
σiuiv∗i

The factors U, V satisfy incoherence condition

maxi‖U∗ei‖2 ≤
µr
n1
,maxi‖V ∗ei‖2 ≤

µr
n2

and
‖UV ∗‖∞ ≤

√
µr

n1n2

Here and below, ‖M‖∞ = maxi ,j |Mĳ |
Ensure that low-rank matrix and sparse matrix can be distinguished.
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Main Result

Define n(1) = max(n1, n2), and n(2) = min(n1, n2).
Suppose L0 is n× n, and the support set of S0 is uniformly distributed
among all sets of cardinality m. Then there is a numerical constant c
such that with probability at least 1− cn−10, Principal Component
Pursuit with λ = 1/

√
n is exact, i.e. L̂ = L0 and Ŝ = S0, provided

that
rank(L0) ≤ ρr nµ−1(logn)−2 and m ≤ ρsn2

Above, ρr and ρs are positive numerical constants.
In the general rectangular case where L0 is n1 × n2, PCP with
λ = 1/sqrtn(1) succeeds with probability at least 1− cn−10

(1) , provided
that rank(L0) ≤ ρr n(2)µ

−1(logn(1))−2 and m ≤ ρsn1n2.
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Implications for Matrix Completion from Grossly Corrupted
Data

Let PΩ be the orthogonal projection onto the linear space of matrices
supported on Ω ⊂ [n1]× [n2],

PΩX =

{
Xĳ (i , j) ∈ Ω
0 otherwise

Imagine we only have available a few entries of L0 + S0, which we
conveniently write as

Y = PΩobs (L0 + S0) = PΩobs L0 + S ′0
we propose recovering L0 by solving the following problem:
Principal Component Pursuit

minimize‖L‖∗ + λ‖S‖1
subject to PΩobs (L + S) = Y
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Corresponding Result

Suppose L0 is n × n, and Ωobs is uniformly distributed among all sets
of cardinality m obeying m = 0.1n2. Suppose for simplicity, that each
observed entry is corrupted with probability τ independently of the
others. Then there is a numerical constant c such that with
probability at least 1− cn−10, Principal Component Pursuit with
λ = 1/

√
0.1n is exact, i.e. L̂ = L0, provided that

rank(L0) ≤ ρr nµ−1(logn)−2 and τ ≤ τs

Above, ρr and τs are positive numerical constants.
In the general rectangular case where L0 is n1 × n2, PCP with
λ = 1/

√
0.1n(1) succeeds from m = 0.1n1n2 corrupted entries with

probability at least 1− cn−10
(1) , provided that

rank(L0) ≤ ρr n(2)µ
−1(logn(1))−2.
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Exact Recovery from Varying Fractions of Error

Notice that in all cases, solving the convex PCP gives a result (L,S) with
the correct rank and sparsity. Moreover, the relative error
‖L− L0‖F/‖L0‖F is small, less than 10−5 in all examples considered.

Liangda Li (Georgia Tech) CSE 8803RS: Recommendation Systems 9 / 20



university-logo

Phase Transition in Rank and Sparsity

Notice that there is a large region in which the recovery is exact. This
highlights an interesting aspect of our result: the recovery is correct even
though in some cases ‖S0‖F � ‖L0‖F .
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Background Modeling from Surveillance Video
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Background Modeling from Surveillance Video-cont.
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Removing Shadows and Specularities from Face Images
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Architecture of the Proof

Any subgradient of the l1 norm at S0 supported on Ω, is of the form

sgn(S0) + F

where F vanishes on Ω, i.e. PΩF = 0, and obeys ‖F‖∞ ≤ 1.
Any subgradient of the nuclear norm at L0 is of the form

UV ∗ + W

where U∗W = 0, WV = 0 and ‖W ‖ ≤ 1. Denote by T the linear
space of matrices

T = {UX ∗ + YV ∗,X ,T ∈ Rn×r}

and by T⊥ its orthogonal complement.
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An Elimination Theorem

We will say that S ′ is a trimmed version of S if supp(S ′) ⊂ supp(S)
and S ′ĳ = Sĳ whenever S ′ĳ 6= 0.
Suppose the solution to PCP with input data M0 = L0 + S0 is unique
and exact, and consider M ′

0 = L0 + S ′0, where S ′0 is a trimmed version
of S0. Then the solution to PCP with input M ′

0 is exact as well.
The Bernoulli model
Ω = {(i ; j) : δĳ = 1}, where the Ωĳ ’s are i.i.d. variables Bernoulli
taking value one with probability ρ and zero with probability 1− ρ, so
that the expected cardinality of Ω is ρn2. From now on, we will write
Ω ∼ Ber(ρ) as a shorthand for Ω is sampled from the Bernoulli model
with parameter ρ.
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Derandomization

Suppose L0 obeys the conditions and that the locations of the
nonzero entries of S0 follow the Bernoulli model with parameter 2ρs ,
and the signs of S0 are i.i.d. ±1 as above (and independent from the
locations). Then if the PCP solution is exact with high probability,
then it is also exact with at least the same probability for the model
in which the signs are fixed and the locations are sampled from the
Bernoulli model with parameter ρs .
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Dual Certificates

Assume that ‖PΩPT‖ < 1. With the standard notations, (L0,S0) is
the unique solution of there is a pair (W ,F ) obeying

UV ∗ + W = λ(sgn(S0) + F )

with PT W = 0, ‖W ‖ < 1, PΩF = 0 and ‖F‖∞ < 1.
Assume that ‖PΩPT‖ < 1/2 and λ < 1. With the standard notations,
(L0, S0) is the unique solution of there is a pair (W ,F ) obeying

UV ∗ + W = λ(sgn(S0) + F + PΩD)

with PT W = 0, ‖W ‖ < 1/2, PΩF = 0 and ‖F‖∞ < 1/2, and
‖PΩD‖F ≤ 1/4.
(a)W ∈ T⊥; (b) ‖W ‖ < 1/2; (c)
‖PΩ(UV ∗− λsgn(S0) + W ‖F ≤ λ/4; (d) ‖PΩ⊥(UV ∗+ W )‖∞ ≤ λ/2.
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Dual Certification via the Golfing Scheme

We propose constructing a dual certificate
W = W L + W S

Construction of W L via the golfing scheme.
For an integer j0 ≥ 1, and let Ωj , 1 ≤ j ≤ j0, be defined so that
Ωc = ∪1≤j≤j0Ωj . Then starting with Y0 = 0, inductively define

Yj = Yj−1 + q−1PΩjPT (UV ∗ − Yj−1)

and set
W L = PT⊥Yj0

Construction of W S via the method of least squares.
Assume that ‖PΩPT‖ < 1/2. Then ‖PΩPTPΩ‖ < 1/4, and thus the
operator PΩ − PΩPTPΩ mapping Ω onto itself is invertible. Set

W S = λPΩ⊥(PΩ − PΩPTPΩ)−1sgn(S0)

(a) ‖W L + W S‖ < 1/2; (b) ‖PΩ(UV ∗ + W L‖F ≤ λ/4; (c)
‖PΩ⊥(UV ∗ + W L + W S)‖∞ ≤ λ/2.
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Key Lemmas

Suppose Ω0 is sampled from the Bernoulli model with parameter ρ0.
Then with high probability,

‖PT − ρ−1
0 PTPΩ0PT‖ ≤ ε

provided that ρ0 ≥ C0ε
−2 µr logn

n for some numerical constant C0 > 0.
For rectangular matrices, we need ρ0 ≥ C0ε

−2 µr logn(1)

n(2)
.

Assume that Ω ∼ Ber(ρ), then ‖PΩPT‖2 ≤ ρ+ ε, provided that
1− ρ ≥ C0ε

−2 µr logn
n .

Assume that Ω ∼ Ber(ρ) with parameter ρ ≤ ρs for some ρs > 0. Set
j0 = 2dlogne. Then the matrix W L obeys
(a) ‖W L‖ < 1/4,
(b) ‖PΩ(UV ∗ + W L)‖F < λ/4,
(c) ‖PΩ⊥(UV ∗ + W L)‖∞ < λ/4.
Assume that S0 is supported on set Ω, and that the signs of S0 are
i.i.d. symmetric. Then the matrix W S obeys
(a) ‖W S‖ < 1/4, (b) ‖PΩ⊥W S‖∞ < λ/4.
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Algorithm for Principal Component Pursuit
The PCP problem is solved using an augmented Lagrange multiplier (ALM)
algorithm, which operates on the augmented Lagrangian

l(L,S,Y ) = ‖L‖∗ + λ‖S‖1+ < Y ,M − L− S > +
µ

2 ‖M − L− S‖2F

Let Sτ denote the shrinkage operator Sτ [x ] = sgn(x)max(|x | − τ, 0), and
Dτ (X ) denote the singular value thresholding operator given by
Dτ (X ) = USτ (Σ)V ∗, where X = UΣV ∗ is any singular value
decompositon, we propose algorithm as below:

Algorithm 1 Principal Component Pursuit by Alternating Directions
initialize: S0 = Y0 = 0, µ > 0.
while not converged do
compute Lk+1 = Dµ−1(M − Sk + µ−1Yk);
compute Sk+1 = Sλµ−1(M − Lk+1 + µ−1Yk);
compute Yk+1 = Yk + µ(M − Lk+1 − Sk+1);

end while
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