Relational Learning via Collective Matrix Factorization

Prepared by Thomas Perry

School of Computational Science \& Engineering
College of Computing Georgia Institute of Technology

Introduction

Goal: To present a generalized approach to collective matrix factorization.
Rating based paradigm

- Users $u, v \in U$; Movies: $i, j \in V$; Genres $s, t \in Z$
- Ratings $X_{u i}$ indicating preference of user u for movie i. Highers scores imply higher preference.
- Genres $Y_{i t}$ indicating movie i belongs to genre t. These are binary values.
- Problem: Ratings are not defined over all $U \times V$, need to predict missing ratings while utilizing Y.

Introduction: Unified View of Factorization

The building block for collective factorization is single-matrix factorization.
(1) Prediction link $f: \Re^{m \times n} \rightarrow \Re^{m \times n}$
(2) Loss function $D\left(X, f\left(U V^{T}\right)\right) \geq 0$
(3) Optional Data Weights $W \in \Re_{+}^{m \times n}$
(9) Hard Constraints on factors U, V.
(6) Regularization penalty, $R(U, V) \geq 0$

Prediction Links

For the model $X \approx f\left(U V^{T}\right)$ we solve
For weighted SVD

$$
\begin{equation*}
\operatorname{argmin}_{U, V}\left\|W \odot\left(X-U V^{T}\right)\right\|_{\text {Fro }}^{2} \tag{1}
\end{equation*}
$$

Generalized Form

$$
\begin{equation*}
\operatorname{argmin}_{U, V}\left[D\left(X, f\left(U V^{T}\right)\right)+R(U, V)\right] \tag{2}
\end{equation*}
$$

Choices for D and f are related to distributional assumptions on X.

Collective Factorization - SVD

One model of collective matrix factorization using regularized SVD.

$$
\begin{gather*}
L_{1}(U, V)=\sum_{u, i \in O}\left(X_{u, i}-U_{u} V_{i}\right)^{2}+\lambda_{1}\left\|U_{u}\right\|^{2}+\lambda_{2}\left\|V_{i}\right\|^{2} \tag{3}\\
L_{2}(V, Z)=\sum_{i, s \in P}\left(Y_{i, s}-V_{i} Z_{s}\right)^{2}+\lambda_{2}\left\|V_{i}\right\|^{2}+\lambda_{3}\left\|Z_{s}\right\|^{2} \tag{4}\\
L(U, V, Z)=\alpha L_{1}(U, V)+(1-\alpha) L_{2}(V, Z) \tag{5}
\end{gather*}
$$

Possibly add additional weighting terms

Bregman Divergences

The approach is generalized for Bregman divergences.

$$
\begin{equation*}
D_{F}(Z \| Y)=F(Z)+F^{*}(Y)-Y \circ Z \tag{6}
\end{equation*}
$$

F is a closed convex function, $\mathrm{F}: \Re^{m \times n} \rightarrow \Re$
F^{*} the convex dual
$A \circ B$ is the matrix dot product $\operatorname{tr}\left(A B^{T}\right)$
If F decomposes into a sum over components of Z, we can define the weighted divergence.

$$
\begin{equation*}
D_{F}(Z \| Y, W)=\sum_{i j} W_{i j}\left(F\left(Z_{i j}\right)+F^{*}\left(Y_{i j}\right)-Y_{i j} Z_{i z}\right) \tag{7}
\end{equation*}
$$

Examples

- $F(x)=x^{2}$
- $F(x)=x \log (x)-x$

Exponential Family oF Distributions

$p_{F}(x \mid \theta)$ is a regular exponential family if each density has the form

$$
\begin{equation*}
\log _{p_{F}(x \mid \theta)}=\log _{p_{0}}(x)+\theta^{T} x-F(\theta) \tag{8}
\end{equation*}
$$

where $F(\theta)$ is the log partition function

$$
\begin{equation*}
F(\theta)=\log \int p_{0}(x) \cdot \exp \left(\theta^{T} x\right) d x \tag{9}
\end{equation*}
$$

For regular exponential families

$$
\begin{equation*}
\log _{p_{F}(x \mid \theta)}=\log _{p_{0}}(x)+F^{*}(x)-D_{F}(x \| f(\theta)) \tag{10}
\end{equation*}
$$

where $f(x)=\nabla F(\theta)$
Minimizing the Bregman divergence under a matching link is equivalent to maximum likelihood for the cooresponding exponential family distribution.

Collective Factorization

One model of Bregman matrix factorization proposes the following decomposable loss function.

$$
\begin{align*}
L_{1}(U, V \mid W) & =D_{F 1}\left(U V^{T} \| X, W\right)+R_{1}(U)+R_{2}(V) \tag{11}\\
L_{2}(V, Z \mid \tilde{W}) & =D_{F 2}\left(V Z^{T} \| Y, \tilde{W}\right)+R_{2}(V)+R_{3}(Z) \tag{12}\\
L(U, V, Z \mid W, \tilde{W}) & =\alpha L_{1}(U, V \mid W)+(1-\alpha) L_{2}(V, Z \mid \tilde{W}) \tag{13}
\end{align*}
$$

Parameter Estimation

- Equation 13 is convex in any one of its arguments.
- Parameters can be estimated by fixing all but one argument of $L=L(U, V, Z \mid W, \tilde{W})$ and updating the free factor using a Newton-Raphson Step.
- The Newton update for the factors reduce to row-wise optimzation of U, V, and Z when L_{1} and L_{2} are decomposable functions.

$$
\begin{equation*}
U_{i}^{\text {new }}=U_{i}-\eta \cdot q\left(U_{i}\right)\left[q^{\prime}\left(U_{i}\right)\right]^{-1} \tag{14}
\end{equation*}
$$

Parameter Esimation cont.

Definitions of $q\left(U_{i}\right), q\left(V_{i}\right), q\left(Z_{i}\right)$

$$
\begin{gather*}
q\left(U_{i}\right)=\alpha\left(W \odot\left(f_{1}\left(U V^{T}\right)-X\right)\right) V+\nabla R_{1}(U) \tag{15}\\
q\left(V_{i}\right)=\alpha\left(W \odot\left(f_{1}\left(U V^{T}\right)-X\right)\right)^{T} U+ \tag{16}\\
(1-\alpha)\left(\tilde{W} \odot\left(f_{2}\left(V Z^{T}\right)-Y\right)\right) Z-\nabla R_{2}(V) \tag{17}\\
q\left(Z_{i}\right)=(1-\alpha)\left(\tilde{W} \odot\left(f_{2}\left(V Z^{T}\right)-Y\right)\right)^{T} V-\nabla R_{3}(Z) \tag{18}
\end{gather*}
$$

Generalizing to Arbitrary Schemas

- The three-factor model generalizes to any pair-wise relational schema.
- The binary relations are represented as a set of edges:

$$
E=(i, j): \epsilon_{i} \epsilon_{j} \wedge i<j
$$

- [U] denotes the set of latent factors and [W] the weight matrices.

The loss of the model is.

$$
\begin{align*}
L([U][W])= & \sum_{(i, j) \in E} \alpha^{i j}\left(D_{F^{(j)}} U^{(i)}\left(U^{(j)}\right)^{T} \| X^{(i j)}, W^{(i j)}\right)+ \tag{19}\\
& \sum_{i=1}^{t}\left(\sum_{j:(i, j) \in E} \alpha^{(i j)}\right) D_{G^{(i)}}\left(0 \| U^{(i)}\right) \tag{20}
\end{align*}
$$

Experiments

Using the Netflix data and movie genre data from IMDB. Goals

- Predict whether a user rated a particular movie.
- Predict the value of a rating for a particular movie.

Loss is calculated by MAE.
I_{2} regularization is used throughout

Outcomes

- Presents collective matrix factorization as a model of pairwise relational data.
- Under the assumption of decomposable, twice differentiable loss, we derive a full Newton step.
- Practical on relational domains with large amounts of data.

