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Introduction

Customer preferences for products drift over time. Preference drift can be
sudden or gradual.

Possible causes of drift

@ New product or services change.

@ Localized factors change (e.g. a change in family structure)
@ Seasonal trends

Goal: To balance between discounting temporary effects that have very
low impact on future behavior, while capturing longer-term trends that
reflect the nature of the customer.
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Empirical Examples of Preference Drift
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Netflix Data: The average movie rating made a sudden jump in 2004.
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Empirical Examples of Preference Drift
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Netflix Data: Ratings tend to increase with the movee age at the time of
the rating. Here, movie age is measured by the time span since its first
rating event within the data set.
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Three Approaches to Concept Drift

Instance selection: Discards instances of less relevance. A time variant,
only recent instances are considered.

Instance weighting: Instances are weighted based on their estimated
relecance. Often, a time decay function is used, under-weighting inances

as they occur deeper into the past.

Ensemble learning: A family of predictors that togethor produce the final
outcome.

Experiments consistently showed improvements with time decay reached
best quality with no decay at all.
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Problem Setup

m users, u,v € U.
nitems, i,j € V.

ryi(t) indicates preference of user u for item i at day t.

Experiments are performed on Netflix data using RMSE.
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Baseline Model

Matrix factorization setup. Each user is associated with a vector p, € R".
Each item is associated with the vector g; € RY.

Predictor

roi = Qi pu (1)

min > (rui — g/ pu)® + Al qill® + 1l pull?) (2)
(u,i,t)
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Baseline Predictor

CF data exhibits large user and item biases - i.e. systematic tendencies for
some user to give higher ratings.

A baseline predictor for r,; is denoted by by;.

Baseline Predictor

bui = u+ by + b; (3)

Integrated Baseline Predictor

bui=p+ by +bi+q] | pu+|RWIT? Yy (4)
yER(u)

@ The overall average rating,

@ The observed deviations of user u from the average rating, b,
@ The observed deviations of item i from the average rating, b;
@ The set of items rated by user u, R(u).
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Advantages of Decomposition

Decomposition of a rating into distinct portions allows us to treat different
temporal aspects in seperation.

User biases, b,, change over time

Item biases, b;, change over time

User preferences, p,, change over time

Item characteristics, pj, rarely changes over time
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Time Changing Baseline Predictor

Time Changing Bias
bui = p+ bu(t) + bi(t) (5)
Time Changing Item Bias
bi(t) = bi + bj gin(1) (6)

@ b, is a real valued function.

@ Split the item biases into time-based bins. For Netflix data, bins are
10 consecutive weeks.

@ Works well for items but is more challanging for users.
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User Changing Bias

Linear function to capture possible gradual drift of user bias.
bi(t) = by + ay - dev,(t) (7)

dev,(t) = sign(t — t,) - |t — t,|° (8)

t, denotes the mean date of rating by user u. Where (3 is set by cross
validation.
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Simplied Learning from Venue Matrix

A more flexible model uses splines.

@ We designate k, time points - {tf, e ,t,‘(’u} - spaced uniformly
across the dates of user’s ratings as kernels that control the following
function:

w e lt=tylpy
b2(t) = by + Zi1 § (9)

ky  o—y[t—t}|
Yol e !

~ sets the smoothness of the spline.
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Learning Document Embedding

Thus far, only smooth functions have been discussed to model user bias.
There are also sudden drifts, "spikes". To address short lived changes, we
assign a single parameter per user and day, absorbing the day specific
variability. This parameter is denoted b, ;. The notion of day can be
exchanged with a user session.

b3(t) = by + v - devy(t) + byt (10)

ku —o=vlt=t{| pu
(S 1
Z/_]_ t; Eu . (11)

40y
b,(t) = bu + Z;(ul et/ ’
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Learn Parameters

2
min Z (ru,-(t) — pu— by — aydev,(t) — by — bi — b,-7B,-,,(t)) (12)
(u,i,t)eK
A (B2 + 02+ b2, + B + b)) (13)

Must learn parameters by, vy, by, bi, and bj in()
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model | static | mov | linear | spline | linear+ | spline+ |
RMSE | 9799 | 9771 | 9731 | 9714 | 9605 [ 9603 |

Table 1: Comparing baseline predictors capturing main movie
and user effects. As temporal modeling becomes more accu-
rate, prediction accuracy improves (lowering RMSE).

e static no temporal effects: by (f) = p + by + bs.

e mov accounting only to movie-related temporal effects: by, (t) =
f+ by + bi + by Bin(e)-

e Jinear linear modeling of user biases: bui(t) = yo + by +
vy - devy, (t) + bi + by Binge)-

e spline spline modeling of user biases: bui(t) = p + by +
syt

¥ ke oAt g i,Bin(t)-

e Jinear+ linear modeling of user biases and single day eftect:
bui(t) = pu + by + ay - devy (t) + by + b + b; Bin(t)-

o spline+ spline modeliilg of user biases and single day effect:
u g—lt—dy|pu

bua(t) = p+bu + % + bu,e + bi +b; pinge)-

Prepared by Thomas Perry (Georgia Tech) Collaborative Filtering with Temporal Dynami




Time Changing Factor Model

Temporal dynamics also affect user preferences.

The same way we treat user biases we also treat each component of the
user preferences p,(t)" = {pui(t), ..., pudt)}

puk(t) = Pu,k +a- deVu(t) + Puk,t (14)
where k=1,...,f
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Final Predictor

Pui(t) = o+ bi(t) + bu(t) + q (Pu(f)+ Ru) 72 3 ﬁ) (15)

JjER(v)

where bj(t), by(t), and p,(t) were given by (6), (10), and (14).
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Model =10 | f=20 | f=50 | =100 | f=200
SVD 9140 | 9074 | 9046 | 9025 | .9009
SVD++ 9131 | 9032 | 8952 | 8924 | .8911
timeSVD++ | .8971 | .8891 | .8824 | .8805 | .8799

Table 2: Comparison of three factor models: prediction ac-
curacy is measured by RMSE (lower is better) for varying
factor dimensionality (f). For all models accuracy improves
with growing number of dimensions. Most significant accuracy
gains are achieved by addressing the temporal dynamics in the
data through the timeSVD++ model.
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