CSE 8803RS: Recommendation Systems Cold Start

Steven P. Crain

School of Computational Science & Engineering College of Computing Georgia Institute of Technology

March 8, 2011

A. Schein, A. Popescul, L. Ungar and D. Pennock 2002 University of Pennsylvania and NEC

Problem: Collaborative filtering cannot recommend movies that have no ratings.

Key idea: Use actors in a new movie to identify similar movies that have been rated.

Other contributions: Use of modified ROC curves for cold-start evaluation. Advocates uses of heuristic baselines.

- Item-based collaborative filtering: recommend items that are similar to ones the user has rated.
- New movies have no rating history....
- How can we recommend new movies to users in a meaningful way?

College of

$$P(user, movie) = \sum_{aspect} P(user) P(aspect|user) P(movie|aspect)$$
(1)

Advantages

- Latent aspects improve generalization.
- Suggestive.

Disadvantage

• Latent aspect of new movie cannot inferred.

Georgia College of Tech Computing

Latent Content Aspects

$$P(user, movie) = \sum_{aspect} P(user) P(aspect|user) P(actor|aspect)$$
(2)

EM is used to fit the model.

Steven P. Crain (Georgia Tech) CSE 8803RS: Recommendation Systems

Georgia

Tech

College of

Computing

Recommendations require

$$P(user|movie) = \sum_{aspect} P(user|aspect)P(aspect|movie)$$
(3)

Estimate P(aspect|movie) using EM: Estimation:

$$P(aspect|actor, movie) \propto P(actor|aspect)P(aspect|movie)$$
 (4)

Maximization:

$$P(aspect|movie) \propto \sum_{actor \in movie} P(aspect|actor, movie)$$
(5)
Georgia
College of
Computing
College of
College of
Computing
College of
Computing
College of
Computing
College of
College of
College of
Computing
College of

Complementary Evaluations Global ROC (GROC)

- Order all (user, movie) by the model.
- Recommend the movie in each of the top-*k* pairs to the corresponding user.
- Plot sensitivity against specificity as k is varied.
- Reflects "easy" cases.

Customer ROC (CROC)

- For each user, order all movies by the model.
- Recommend the top-k movies for each customer.
- Plot sensitivity against specificity as k is varied.
- Reflects "hard" (heavy tail) cases.

Tech

Calleae af

Computing

Predicting What Will Be Rated

Predicting the Ratings

Image: A mathematical states and a mathem

March 8, 2011 9 / 17

- GROC does not completely describe model performance.
- Aspect model best at predicting what will be rated, but does not know the rating.
- Naïve Bayes provides a weak baseline.
- A well chosen heuristic baseline is ideal for comparison.

J Huete, L de Campos, J Fernandez-Luna and M Rueda-Morales 2007 University of Granada, Spain Problem:

- Items in collaborative filtering typically have associated features.
- Existing methods neglected the features in favor of latent profiles. Key idea: The structure of the features can induce an equivalent and useful structure in the user profile.

Assumptions:

- The features can be grouped into categories.
- The user's rating is independent of the features when conditioned on the categories.
- The user's rating is a mixture of the user's ratings for the values of the categories for an item.

Example categories for movies: title, genre, actors, keywords. Features are all boolean, e.g. one feature per possible actor.

Probability Model

- V: Value (rating) of item for user.
- C_i: Value (rating) of category *i* for this user and item.
- *F_{ij}*: Feature *j* of category *i* for this item.

Georgia Tech College of

Computing

Estimation: The model is fixed, so if we observed C_i we could easily compute the MLE with Laplace smoothing. EM is used to simultaneously estimate C_i s and model.

Model	%Succ.	Recall	Prec.	F1
Generative	68%	0.7179	0.5714	0.6364
Learning Parameter	64%	0.7692	0.5357	0.6316
Naive Bayes	71%	0.6668	0.5778	0.6190
Learning Profile from	71%	0.6668	0.6190	0.6420
Hidden Components				

	SP				
LAR	11	12	21	22	
111	1.0	1.0	1.0	0.76	
112	1.0	1.0	1.0	0.49	
121	0.99	0.87	0.86	0.05	
122	0.92	0.36	0.61	0.20	
211	1.0	0.22	0.99	0.0	
212	0.99	0.44	0.55	0.0	
221	0.33	0.58	0.0	0.0	
222	0.11	0.47	0.0	0.0	

- Evaluation is weak (only small synthetic problem).
- Rating pattern problem is an experimental design issue.
- Structural model improves precision—ideal for recommendation.

17 / 17