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Methods and Metrics for Cold-Start Recommendation

A. Schein, A. Popescul, L. Ungar and D. Pennock 2002
University of Pennsylvania and NEC
Problem: Collaborative filtering cannot recommend movies that have no
ratings.
Key idea: Use actors in a new movie to identify similar movies that have
been rated.
Other contributions: Use of modified ROC curves for cold-start evaluation.
Advocates uses of heuristic baselines.
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Item Cold-Start

Item-based collaborative filtering: recommend items that are similar
to ones the user has rated.
New movies have no rating history. . . .
How can we recommend new movies to users in a meaningful way?
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Latent Aspects

User Aspect Movie

P(user , movie) =
∑

aspect
P(user)P(aspect|user)P(movie|aspect) (1)

Advantages
Latent aspects improve generalization.
Suggestive.

Disadvantage
Latent aspect of new movie cannot inferred.
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Latent Content Aspects

User Aspect Actor

P(user , movie) =
∑

aspect
P(user)P(aspect|user)P(actor |aspect) (2)

EM is used to fit the model.

Steven P. Crain (Georgia Tech) CSE 8803RS: Recommendation Systems March 8, 2011 5 / 17



Folding In New Movies

Recommendations require

P(user |movie) =
∑

aspect
P(user |aspect)P(aspect|movie) (3)

Estimate P(aspect|movie) using EM:
Estimation:

P(aspect|actor , movie) ∝ P(actor |aspect)P(aspect|movie) (4)

Maximization:

P(aspect|movie) ∝
∑

actor∈movie
P(aspect|actor , movie) (5)
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ROC Curves for Evaluation

Complementary Evaluations
Global ROC (GROC)

Order all (user , movie) by the model.
Recommend the movie in each of the top-k pairs to the
corresponding user.
Plot sensitivity against specificity as k is varied.
Reflects “easy” cases.

Customer ROC (CROC)
For each user, order all movies by the model.
Recommend the top-k movies for each customer.
Plot sensitivity against specificity as k is varied.
Reflects “hard” (heavy tail) cases.
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Predicting What Will Be Rated
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Predicting the Ratings

Steven P. Crain (Georgia Tech) CSE 8803RS: Recommendation Systems March 8, 2011 9 / 17



Discussion

GROC does not completely describe model performance.
Aspect model best at predicting what will be rated, but does not
know the rating.
Naïve Bayes provides a weak baseline.
A well chosen heuristic baseline is ideal for comparison.
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Using Structural Content Information for Learning User
Profiles

J Huete, L de Campos, J Fernandez-Luna and M Rueda-Morales 2007
University of Granada, Spain
Problem:

Items in collaborative filtering typically have associated features.
Existing methods neglected the features in favor of latent profiles.

Key idea: The structure of the features can induce an equivalent and
useful structure in the user profile.
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Categories of Features

Assumptions:
The features can be grouped into categories.
The user’s rating is independent of the features when conditioned on
the categories.
The user’s rating is a mixture of the user’s ratings for the values of
the categories for an item.

Example categories for movies: title, genre, actors, keywords. Features are
all boolean, e.g. one feature per possible actor.
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Probability Model

V : Value (rating) of item for user.
Ci : Value (rating) of category i for this user and item.
Fij : Feature j of category i for this item.
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Algorithm

Estimation: The model is fixed, so if we observed Ci we could easily
compute the MLE with Laplace smoothing.
EM is used to simultaneously estimate Cis and model.
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Accuracy
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Rating Patterns
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Discussion

Evaluation is weak (only small synthetic problem).
Rating pattern problem is an experimental design issue.
Structural model improves precision—ideal for recommendation.
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