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Pairwise Preference Regression for Cold-start

Recommendation

Feature-based regression models.

User demographic information and item content features.
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Three Types of Problems

Recommending existing items for new users

Recommending new items for existing users

Recommending new items for new users
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Profile Construction

Item content: genre, cast, manufacturer, production year.

Item popularity/quality.

User profiles: demographical information and aggregated historical
behavior.

User feature z, item feature x.
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Bilinear Form for Prediction

sui = xT
u Wzi = wT (xu ⊗ zi).
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An alternative loss function
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Experiments

Baseline: Most popular, segmented most popular, Vibes affinity

Measure: nDCGk , k = 1.

training: I; test: II, III, IV.

For each user, partition items according to their ratings. Random
sample one item from each cluster.
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Experiments cont.
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Learning Preferences of New Users in Recommender

Systems: An Information Theoretic Approach

How can we effectively learn preferences of new users so that they can
begin receiving accurate personalized recommendations from the
system?

User effort: familiar items

Recommendation accuracy
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Strategies to Learn User Profiles

Popularity

Entropy: no information about rating frequency

Entropy0: taking missing values into account. w0 the weight for
missing values

Entropy0(at) = −
1

∑

i wi

5
∑

i=0

piwi log pi

HELF: Harmonic mean of entropy and logarithm of frequency

HELF =
2LF ′H ′

LF ′ + H ′
,

where LF ′ = log(ai )
log(‖U‖) and H ′ = log H

log 5 .
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Igcn: Information Gain through Clustered Neighbors

Adaptive to user’s rating history

Decision Tree

IG(at ;W ) = H(C) −
∑

r
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|
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Why Adaptive?

item 1 item 2 item 3

user 1 5 1 5

user 2 5 1 1

user 3 1 5 1

user 4 1 5 1

Globally, item 1 and item 2 are both more informative than item 3 in
terms of rating entropy

However, when we known a user rates item 1 with 5 stars, item 3 is
more informative than item 2.
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Igcn: Information Gain through Clustered Neighbors
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Evaluation Process

MAE

Expected Utility: U(R̂, R) = R − 2|R̂ − R|.
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Results
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