Cross-Domain Collaborative Filtering

Shuang Hong Yang

CSE, Gerogia Tech

Aug. 11th, 2010

Outline

- Problem Definition
- Different scenarios
- Representative work
- Summary and Discussion

• Use movie ratings to help book recommendation

user\item	Harry Potter	God Farther	Avatar
Joe	3	5	5
Harry	?	4	5
George	5	3	3

Movie

Book

	user\item	Harry Rotter	God Farther	1984
(Joe	3	?	?
	Harry	?	?	5
	David	4	?	5

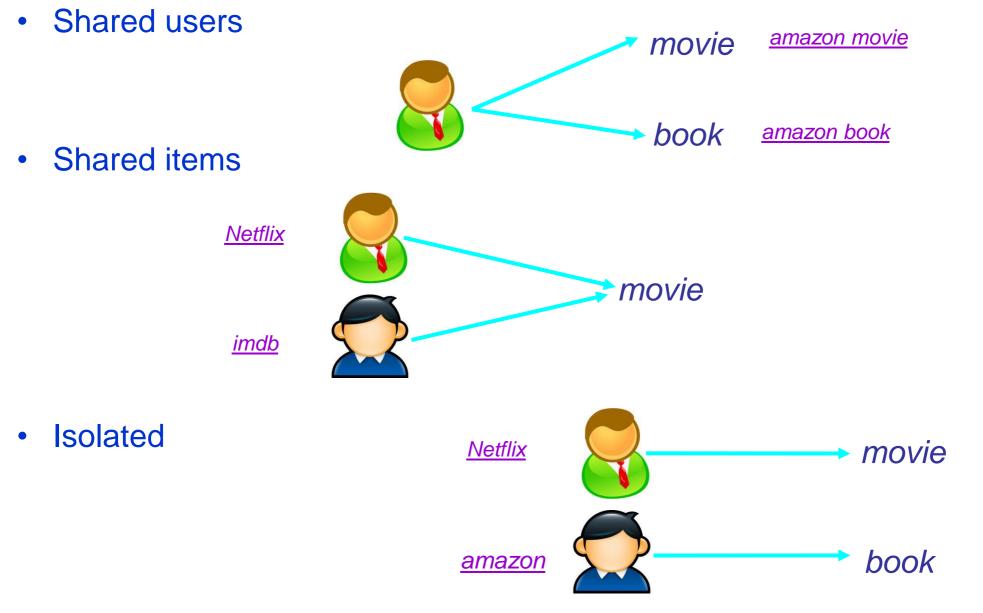
Why it is important?

• Behavior Integration: user generated data are scattered among different domains (systems, websites, categories)



• New system: CF is effective for relatively mature systems, but not for low-traffic ones.

Typical settings



Typical settings

• Shared users : rating matrix

 $R = \left| \underbrace{\mathbb{E}}_{\mathbf{A}} \left| R_m \, \dot{\cdot} \, R_b \right| \right|$ Shared items movie book $R = \left| \begin{array}{c} R_1 \\ \dots \\ R_2 \end{array} \right|$ Isolated $R = \left| \begin{array}{c} R_1 \\ R_2 \end{array} \right|$

• Single domain

$$R = UV^{\top} + (e_{uv})$$
$$U_u \sim \mathcal{N}(0, \sigma^2 I)$$
$$V_v \sim \mathcal{N}(0, \sigma^2 I)$$
$$e \sim \mathcal{N}(0, \sigma^2)$$

• Shared users

- shared factor [c.f. collaborative matrix factorization]

$$R = \left[\begin{array}{cc} R_1 & R_2 \end{array} \right] = \left[\begin{array}{cc} UV_1 & UV_2 \end{array} \right]$$

- correlated factor

$$R = \begin{bmatrix} R_1 & R_2 \end{bmatrix} = \begin{bmatrix} U_1 V_1 & U_2 V_2 \end{bmatrix}$$
$$\begin{bmatrix} U_1 \\ U_2 \end{bmatrix} \sim \mathcal{N}(0, \begin{bmatrix} \sigma_1^2 I & \Sigma \\ \Sigma^\top & \sigma_2^2 I \end{bmatrix})$$

Shared items

- shared factor [c.f. collaborative matrix factorization]

$$R = \left[\begin{array}{c} R_1 \\ R_2 \end{array} \right] = \left[\begin{array}{c} U_1 V \\ U_2 V \end{array} \right]$$

– correlated factor

$$R = \begin{bmatrix} R_1 \\ R_2 \end{bmatrix} = \begin{bmatrix} U_1 V_1 \\ U_2 V_2 \end{bmatrix}$$
$$\begin{bmatrix} V_1 \\ V_2 \end{bmatrix} \sim \mathcal{N}(0, \begin{bmatrix} \sigma_1^2 I & \Sigma \\ \Sigma^\top & \sigma_2^2 I \end{bmatrix})$$

Isolated case

different users make decisions (rate) regarding different items

$$R = \begin{bmatrix} R_1 & & \\ & R_2 \end{bmatrix} = \begin{bmatrix} U_1 V_1 & & \\ & U_2 V_2 \end{bmatrix}$$

- shared factor does not work --- no correspondence to share

- correlated factor does not work either --- trivial covariance
- nothing useful to transfer?
 - Behavioral pattern regardless user/item

• .

Outline

- Problem Definition
- Different scenarios
- Representative work
- Summary and Discussion

Shared case

- [Yang et al, WWW' 2011]
 - Like like alike -- Joint friendship and interest propagation in social networks
- [Zhang & Yeung, UAI' 2010]
 - Multi-Domain Collaborative Filtering
- [Pan et al, AAAI' 2010]: Transfer Learning in Collaborative Filtering for Sparsity Reduction

Isolated case

- [Li et al, IJCAI' 2009]: Can movies and books collaborate? cross domain collaborative filtering for sparsity reduction
- [Li et al, ICML' 2009]: Transfer Learning for Collaborative Filtering via a Rating-Matrix Generative Model

Representative work

Shared case

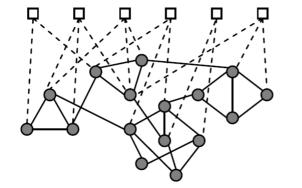
- [Yang et al, WWW' 2011]
 - Like like alike -- Joint friendship and interest propagation in social networks
- [Zhang & Yeung, UAI' 2010]

Multi-Domain Collaborative Filtering

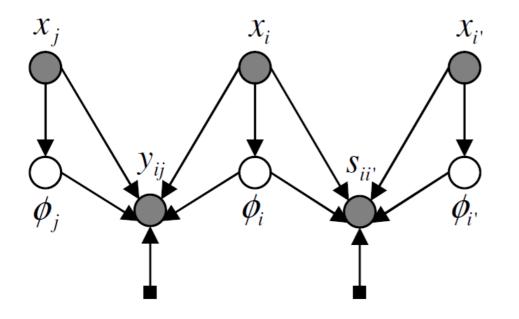
- [Pan et al, AAAI' 2010]: Transfer Learning in Collaborative Filtering for Sparsity Reduction
- Isolated case
 - [Li et al, IJCAI' 2009]: Can movies and books collaborate? cross domain collaborative filtering for sparsity reduction
 - [Li et al, ICML' 2009]: Transfer Learning for Collaborative Filtering via a Rating-Matrix Generative Model

Like like alike ... [Yang et al WWW' 2011]

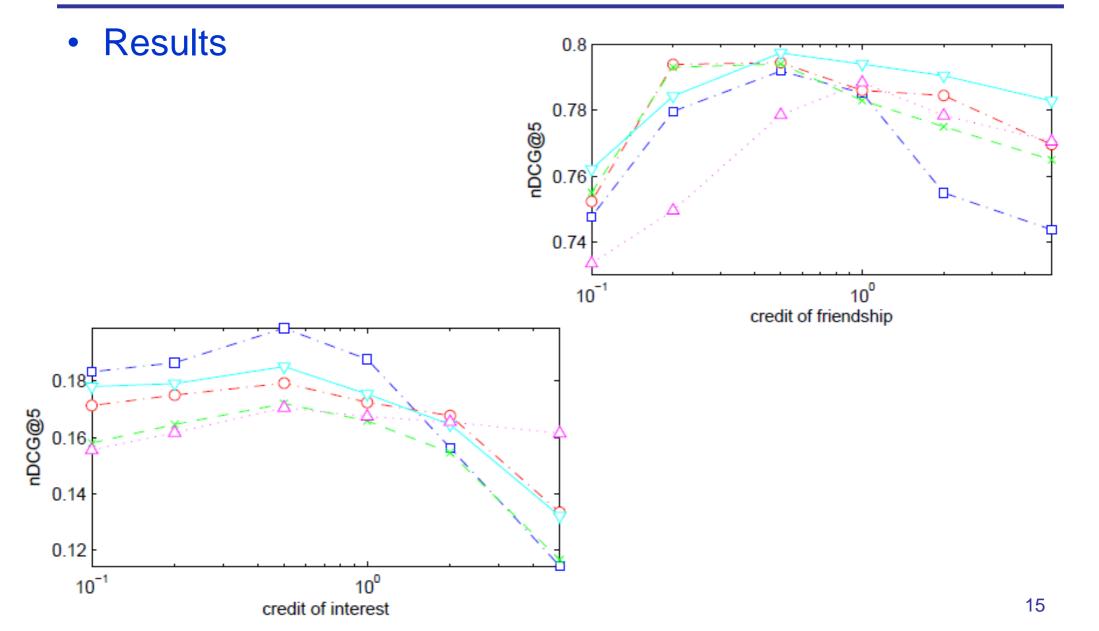
Shared factor



- □ service item
- user
- friendship
- --- interest



Like like alike ... [Yang et al WWW' 2011]



Shared case

- [Yang et al, WWW' 2011]
 - Like like alike -- Joint friendship and interest propagation in social networks
- [Zhang & Yeung, UAI' 2010]
 - Multi-Domain Collaborative Filtering
- [Pan et al, AAAI' 2010]: Transfer Learning in Collaborative Filtering for Sparsity Reduction
- Isolated case
 - [Li et al, IJCAI' 2009]: Can movies and books collaborate? cross domain collaborative filtering for sparsity reduction
 - [Li et al, ICML' 2009]: Transfer Learning for Collaborative Filtering via a Rating-Matrix Generative Model

Multi-domain CF [zhang & Yeung UAI' 2010]

• For each domain

$$R^{(i)} = U^{(i)}V^{(i)\top} + E^{(i)}$$
$$U_u^{(i)} \sim \mathcal{N}(0, \sigma^2 I)$$
$$V_v^{(i)} \sim \mathcal{N}(0, \sigma^2 I)$$
$$e^{(i)} \sim \mathcal{N}(0, \sigma^2)$$

• Correlated profile

$$\begin{bmatrix} U^{(i)} \end{bmatrix} \sim \mathcal{N}(0, \Sigma)$$

(*i.e.*, $\begin{bmatrix} U_{u}^{(i)} \end{bmatrix} \sim \mathcal{N}(0, \Sigma)$

Multi-domain CF [zhang & Yeung UAI' 2010]

Results

Method	1st domain	2nd domain	3rd domain	4th domain	5th domain	Total
PMF	0.9642	1.2104	0.9377	1.0035	1.0352	1.0092
CMF	0.8272	0.7977	0.8120	0.7945	0.7987	0.8088
MCF	0.8061	0.7914	0.7907	0.7761	0.7859	0.7913
MCF-LF	0.8017	0.7644	0.7806	0.7607	0.7504	0.7755

Table 1: Comparison of different methods on the MovieLens data.

Table 3: Mean of correlation matrix learned by MCF-LF on the MovieLens data in different domains. 1st domain: 'Comedy'; 2nd domain: 'Romance'; 3rd domain: 'Drama'; 4th domain: 'Action'; 5th domain: 'Thriller'.

	1st	2nd	3rd	4th	5th
1st	1.0000	0.8837	0.8584	0.8319	0.8302
2nd	0.8837	1.0000	0.9288	0.8855	0.8805
3rd	0.8584	0.9288	1.0000	0.8647	0.8783
4th	0.8319	0.8855	0.8647	1.0000	0.9122
5th	0.8302	0.8805	0.8783	0.9122	1.0000

Representative work

- Shared case
 - [Yang et al, WWW' 2011]
 - Like like alike -- Joint friendship and interest propagation in social networks
 - [Zhang & Yeung, UAI' 2010]

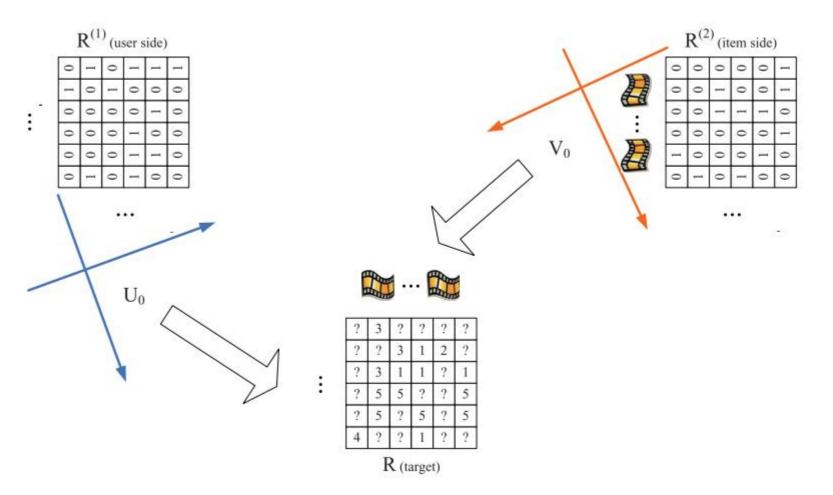
Multi-Domain Collaborative Filtering

 [Pan et al, AAAI' 2010]: Transfer Learning in Collaborative Filtering for Sparsity Reduction

Isolated case

- [Li et al, IJCAI' 2009]: Can movies and books collaborate? cross domain collaborative filtering for sparsity reduction
- [Li et al, ICML' 2009]: Transfer Learning for Collaborative Filtering via a Rating-Matrix Generative Model

• Shared users & items



- Shared users & items
- Correlated factors ("coordinate system transfer")

- 1. SVD in R1 and R2 independently

$$\begin{split} \min_{\mathbf{U}^{(i)}, \mathbf{V}^{(i)}, \mathbf{B}^{(i)}} \| \mathbf{Y}^{(i)} \odot (\mathbf{R}^{(i)} - \mathbf{U}^{(i)} \mathbf{B}^{(i)} \mathbf{V}^{(i)T}) \|_{F}^{2} \\ \mathbf{B}^{(i)} &= \operatorname{diag}(\sigma_{1}^{(i)}, \dots, \sigma_{j}^{(i)}, \dots, \sigma_{d}^{(i)}) \\ \mathbf{U}^{(i)T} \mathbf{U}^{(i)} &= \mathbf{I}, \mathbf{V}^{(i)T} \mathbf{V}^{(i)} = \mathbf{I} \end{split}$$

- Shared users & items
- Correlated factors ("coordinate system transfer")
 - 1. SVD in R1 and R2 independently
 - 2. Correlated factors (use U1 and V2 as Gaussian means)

 $\min_{\mathbf{U},\mathbf{V},\mathbf{B}} ||\mathbf{Y} \odot (\mathbf{R} - \mathbf{U}\mathbf{B}\mathbf{V}^T)||$ $+ \frac{\rho_u}{2} ||\mathbf{U} - \mathbf{U}_0||_F^2 + \frac{\rho_v}{2} ||\mathbf{V} - \mathbf{V}_0||_F^2$ $\text{ s.t. } \mathbf{U}^T \mathbf{U} = \mathbf{I}, \mathbf{V}^T \mathbf{V} = \mathbf{I}$

Results

Table 2: Prediction performance of average filling (AF), latent factorization model (LFM), collective matrix factorizatio CMF), and coordinate system transfer (CST). Numbers in boldface (i.e. **0.7481**) are the best results among all methods.

	Observed	Wi	thout Transfer	With Transfe	er
	(sparsity)	AF	LFM	CMF	CST
	10 (0.2%)	0.7764 ± 0.0008	0.8934 ± 0.0005	0.7642 ± 0.0024	0.7481 ± 0.0014
	20 (0.4%)	0.7430 ± 0.0006	0.8243 ± 0.0019	0.7238 ± 0.0012	0.7056 ± 0.0008
MAE	30 (0.6%)	0.7311 ± 0.0005	0.7626 ± 0.0008	0.7064 ± 0.0008	0.6907 ± 0.0006
	40 (0.8%)	0.7248 ± 0.0004	0.7359 ± 0.0008	0.6972 ± 0.0007	0.6835 ± 0.0008
	10 (0.2%)	0.9853 ± 0.0011	1.0830 ± 0.0000	0.9749 ± 0.0033	0.9649 ± 0.0019
	20 (0.4%)	0.9430 ± 0.0006	1.0554 ± 0.0016	0.9261 ± 0.0014	0.9059 ± 0.0013
RMSE	30 (0.6%)	0.9280 ± 0.0005	0.9748 ± 0.0012	0.9058 ± 0.0009	0.8855 ± 0.0010
	40 (0.8%)	0.9202 ± 0.0003	0.9381 ± 0.0010	0.8955 ± 0.0007	0.8757 ± 0.0011
Time Complexity		O(p)	$O(kpd^2 + k\max(n,m)d^3)$	$O(kpd^2 + k\max(n,m)d^3)$	$O(kpd^3 + kd^6)$

Representative work

- Shared case
 - [Yang et al, WWW' 2011]
 - Like like alike -- Joint friendship and interest propagation in social networks
 - [Zhang & Yeung, UAI' 2010]

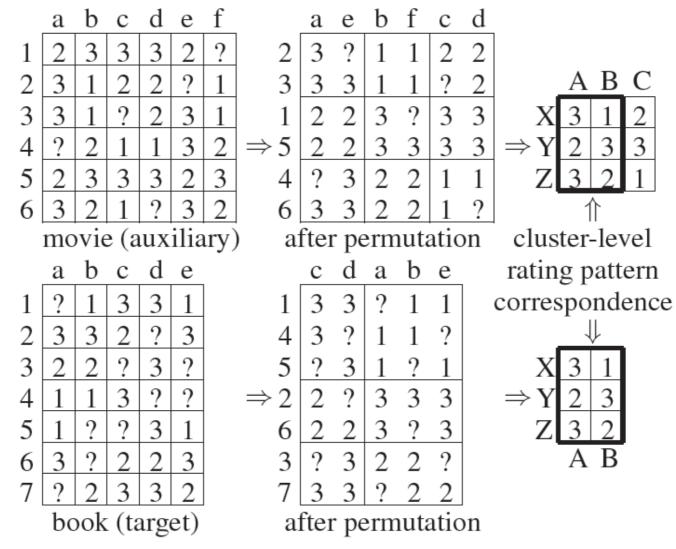
Multi-Domain Collaborative Filtering

 [Pan et al, AAAI' 2010]: Transfer Learning in Collaborative Filtering for Sparsity Reduction

Isolated case

- [Li et al, IJCAI' 2009]: Can movies and books collaborate? cross domain collaborative filtering for sparsity reduction
- [Li et al, ICML' 2009]: Transfer Learning for Collaborative Filtering via a Rating-Matrix Generative Model

• Rating pattern ("codebook") transfer



25

- Rating pattern ("codebook") transfer
 - Bi-cluster users/items in auxiliary domain according to ratings
 - Use cluster centers as "codebook" to recover ratings in target domain
 - Predict rating by train a CF model on the recovered ratings

- Rating pattern ("codebook") transfer
 - Bi-cluster users/items in auxiliary domain according to ratings
 - Use cluster centers as "codebook" to recover ratings in target domain
 - Predict rating by train a CF model on the recovered ratings

$$\min_{\mathbf{U} \ge 0, \mathbf{V} \ge 0, \mathbf{S} \ge 0} \left\| \mathbf{X}_{aux} - \mathbf{U} \mathbf{S} \mathbf{V}^{\top} \right\|_{F}^{2}$$
s.t. $\mathbf{U}^{\top} \mathbf{U} = \mathbf{I}, \mathbf{V}^{\top} \mathbf{V} = \mathbf{I},$

orthogonal nonnegative tri-factorization

- Rating pattern ("codebook") transfer
 - Bi-cluster users/items in auxiliary domain according to ratings
 - Use cluster centers as "codebook" to recover ratings in target domain
 - Predict rating by train a CF model on the recovered ratings

$$\mathbf{B} = [\mathbf{U}_{aux}^{ op} \mathbf{X}_{aux} \mathbf{V}_{aux}] \oslash [\mathbf{U}_{aux}^{ op} \mathbf{1} \mathbf{1}^{ op} \mathbf{V}_{aux}]$$

$$\min_{\substack{\mathbf{U}_{tgt} \in \{0,1\}^{p \times k} \\ \mathbf{V}_{tgt} \in \{0,1\}^{q \times l}}} \left\| \begin{bmatrix} \mathbf{X}_{tgt} - \mathbf{U}_{tgt} \mathbf{B} \mathbf{V}_{tgt}^{\top} \end{bmatrix} \circ \mathbf{W} \right\|_{F}^{2}$$
s.t.
$$\mathbf{U}_{tqt} \mathbf{1} = \mathbf{1}, \mathbf{V}_{tqt} \mathbf{1} = \mathbf{1},$$

- Rating pattern ("codebook") transfer
 - Bi-cluster users/items in auxiliary domain according to ratings
 - Use cluster centers as "codebook" to recover ratings in target domain
 - Predict rating by train a CF model on the recovered ratings

•
$$\tilde{\mathbf{X}}_{tgt} = \mathbf{W} \circ \mathbf{X}_{tgt} + [\mathbf{1} - \mathbf{W}] \circ [\mathbf{U}_{tgt} \mathbf{B} \mathbf{V}_{tgt}^{\top}]$$

• Predict rating by memory based CF

Results

- Use Eachmovie to help recommendation on Movielens or BookXing

Training Set	Method	Given5	Given10	Given15
	PCC	0.930	0.883	0.873
	CBS	0.874	0.845	0.839
ML100	WLR	0.915	0.875	0.890
	CBT	0.840	0.802	0.786
	PCC	0.905	0.878	0.878
	CBS	0.871	0.833	0.828
ML200	WLR	0.941	0.903	0.883
	CBT	0.839	0.800	0.784
	PCC	0.897	0.882	0.885
	CBS	0.870	0.834	0.819
ML300	WLR	1.018	0.962	0.938
	CBT	0.840	0.801	0.785

Table 1: MAE on MovieLens (average over 10 splits)

Table 2: MAE on Book-Crossing (average over 10 splits)

Training Set	Method	Given5	Given10	Given15
	PCC	0.677	0.710	0.693
	CBS	0.664	0.655	0.641
BX100	WLR	1.170	1.182	1.174
	CBT	0.614	0.611	0.593
	PCC	0.687	0.719	0.695
	CBS	0.661	0.644	0.630
BX200	WLR	0.965	1.024	0.991
	CBT	0.614	0.600	0.581
	PCC	0.688	0.712	0.682
	CBS	0.659	0.655	0.633
BX300	WLR	0.842	0.837	0.829
	CBT	0.605	0.592	0.574

Representative work

- Shared case
 - [Yang et al, WWW' 2011]
 - Like like alike -- Joint friendship and interest propagation in social networks
 - [Zhang & Yeung, UAI' 2010]

Multi-Domain Collaborative Filtering

 [Pan et al, AAAI' 2010]: Transfer Learning in Collaborative Filtering for Sparsity Reduction

Isolated case

- [Li et al, IJCAI' 2009]: Can movies and books collaborate? cross domain collaborative filtering for sparsity reduction
- [Li et al, ICML' 2009]: Transfer Learning for Collaborative Filtering via a Rating-Matrix Generative Model

CF Task III

	a	b	c	d	e	f	g
1	2	1	?	3	3	?	1
2	?	?	3	2	1	2	2
3	2	1	2	?	3	3	?
4	1	3	?	1	2	1	3
5	3	2	3	?	?	2	?

Permute rows & cols →

Permute rows & cols

→

	a	c	d	f	e	b	g
1	2	? 2	3	? 3	3	1	1
3	2	2	3 ?	3	3	1	?
2	?	3	2	2 2	1	?	2
5	3	3	?	2	?	2	2 ?
4	1	?	1	1	2	3	3

a c d f e b g 2 ? 3 ? 3 1 1 2 ? 3 3 1 ? ? 3 2 2 1 ? 2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
? 3 2 2 1 ? 2 7

	I	1	2	1	
~	П	3	3	1	
~	ш	2	1	2	
	IV	1	2	3	
				leve Iatr	

B

3

2

1

Α

2

3

1

П

Ш

IV

C D

1

2

3

←

3

1

2

			leve Iatri		
	В	С	D		
I	1	2	1		
п	3	3	1		
ш	2	1	2	-	
rv	1	2	3		

A B C

1

3

2

2

3

1

←

3

2

3

I

Π

Ш

→

	A	B	С	D
Ι	3	1	2	1
Π	2	3	3	1
ш	3	2	1	2
IV	1	1	2	3

B

1

3

2

1

Α

3

2

3

1

Π

ш

IV

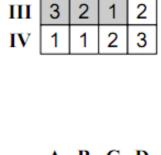
C D

2

3

1

2



B

1

3

А

3

2

I

П

С

2

3

D

1

3	S
1	rows &
1	LOW
2	mute
?	8

cols → Perm

	a	e	b	f	c	d
2	3	?	1 ?	1	2 2	2 ?
2 3	3	? 3	?	1	2	?
1	? 2	2 2	3 3	3 ?	? 3	3 ?
5	2	2	3	?	3	?
4	3	? 3	?	2 2	1	1
6	3	3	2	2	?	1

	b	d	a	с	e	
5	?	1	2	2	?	
5 3	1	1	?	2 2	1	
1	3	?	3	?	1	
4	3	3	?	3	1	
7	2	2	1	?	2	
2	2	1	2	2	2	

b

3

?

?

3

2

a

3

2

?

?

2

?

1

1

2

3

4

5

6

7

b

3

?

1

3

?

1

2

a

?

3

3

3

2

3

1

2

3

4

5

6

с

?

2

2

3

?

d

3

2

?

?

1

d

?

1

1

3

1

2

с

?

2

2

3

2

2

?

e

2

?

3

?

2

3

e

?

1

?

3

2

2

f

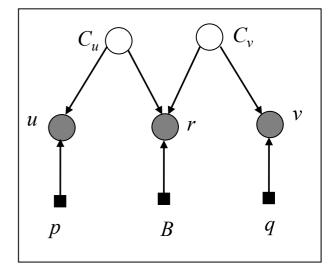
CF Task II

2

3

Transfer Learning for Collaborative Filtering via... [Li et al ICML' 2009]

- Rating pattern ("codebook") transfer
 - A pLSI-style generative model
 - draw a cluster $m \sim p(C_u)$, $n \sim p(C_v)$
 - draw user $u \sim p(u|C_u=m)$, draw item $v \sim p(v|C_v=n)$
 - draw rating $r \sim p(r | C_u = m, C_v = n)$



Rating prediction

$$f_R(u_i^{(z)}, v_i^{(z)}) = \sum_r r \sum_{k,l} P(r|c_{\mathcal{U}}^{(k)}, c_{\mathcal{V}}^{(l)}) P(c_{\mathcal{U}}^{(k)}|u_i^{(z)}) P(c_{\mathcal{V}}^{(l)}|v_i^{(z)})$$
$$= \hat{\mathbf{p}}_u^\top \mathbf{B} \hat{\mathbf{p}}_v$$

Transfer Learning for Collaborative Filtering via... [Li et al ICML' 2009]

 Result 	S
----------------------------	---

TRAIN	Method	GIVEN5	GIVEN10	GIVEN15					
ML100	PCC FMM RMGM	$0.930 \\ 0.908 \\ 0.868$	$0.908 \\ 0.868 \\ 0.822$	$0.895 \\ 0.846 \\ 0.808$					
ML200	PCC FMM RMGM	$\begin{array}{c} 0.934 \\ 0.890 \\ 0.859 \end{array}$	0.899 0.863 <i>0.821</i>	$0.888 \\ 0.847 \\ 0.806$					
ML300	PCC FMM RMGM	0.935 0.885 <i>0.857</i>	0.896 0.868 <i>0.820</i>	$0.888 \\ 0.846 \\ 0.804$	BX100	PCC FMM RMGM	$0.617 \\ 0.619 \\ 0.612$	$\begin{array}{c} 0.599 \\ 0.592 \\ 0.583 \end{array}$	0.600 0.583 <i>0.573</i>
					BX200	PCC FMM RMGM	$0.621 \\ 0.617 \\ 0.615$	$0.612 \\ 0.602 \\ 0.591$	$\begin{array}{c} 0.620 \\ 0.596 \\ 0.583 \end{array}$
					BX300	PCC FMM RMGM	$0.621 \\ 0.615 \\ 0.612$	$0.619 \\ 0.604 \\ 0.590$	0.630 0.596 <i>0.581</i>

