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Introduction

One of the biggest challenges in recommender systems: Data Sparsity
— especially with memory-based techniques
Matrix factorization techniques have become popular in recent times
— Nevertheless, sparsity limits performance
One approach is to use data from multiple sources
— Multi-Domain Collaborative Filtering (MCF)
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Applications

This technique is particularly suitable for large e-commerce and social
networking services
—Multiple domains
—Same set of users
E.g. Amazon
—Domains: Books, Electorinic Goods, ...
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Multi-Domain Collaborative Filtering

Each Domain constiutes a prediction problem
For the same set of users, we have an incomplete rating matrix in
different domains
Exploit the correlation between the domains to alleviate data sparsity
This paper proposes a probabilistic framework to model each
prediction problem and correlation among different domains
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Multi-Domain Collaborative Filttering

Consider K domains
— X i ∈ Rmi xni - rating matrix for the ith domain. i = 1,...,K
— total no of users: m
U i ∈ Rdxm and V i ∈ Rdxni
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Multi-Domain Collaborative Filtering

Conditional distribution over the observed ratings on the ith domain:
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Correlation between different domains

Use a matrix-variate normal distribution U = vec(U1), ..., vec(Uk)

matrix variate normal distribution is defined as
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Parameter Learning

The log posterior over U iandV i is given by
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Parameter Learning

After plugging in the equations in the negative of log posterior
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Link Function

Gaussian likelihood is not suitable for integral ratings.
—Therefore, use a link function g(: θ)
—Z i

jk = gi(X i
jk)

Using Jacobian transformation
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Experiments

Datasets: MovieLens and Book-Crossing
Evaluation Metric: Root Mean Squared Error
Base Line Systems: Independent collaborative filtering using PMF
and Collective Matrix Factorization (CMF)
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Variation with Latent Feature Dimension
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Comparison over MovieLens Dataset
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Comparison over Book-Crossing Dataset
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