# Recommendation in social networks

Shuang Hong Yang

CSE, Georgia Tech

Apr. 19th, 2011

## Levchin and Gurley Say That Next Big Company Will Capture The Interest Graph

#### **Rip Empson**

As such, what everyone in Silicon Valley and "Venture Land" conceive of as the real gamechanging model involves capturing and capitalizing on the "interest graph," he says. The company that succeeds in doing so would be "close to the Google search paradigm because it would be right in line with demand generation and with discovery that relates to product purposes." Thus, it is the interest graph that defines the middle ground between Google and Facebook — between search, advertising, and the social graph.



the Web. Emblematic of today's mindset, they attacked this rather large topic by comparing the strengths and objectives of Google and Facebook, using the latter's jaw-dropping stats (500+ million users, 1 in every 13 people on Earth logs into Facebook each day) and its promotion of the social graph as a measure of what's to come.

Digg 1

## from <u>Social network</u> to <u>interest network</u>



users connect to their friends

users interact with service items (applications, ads, games, movies,...)

## from <u>Social network</u> to <u>interest network</u>



## What can we gain from social graph

## • Homophily

- People connected to each other tend to have similar interest;

- Influence
  - trust, agreement, approval
  - distrust, disagreement, opposement

## Representative work

- Homophily
  - [Ma et al, SIGIR' 2009]
    - Learning to Recommend with Social Trust Ensemble
  - [Jamali & Ester et al, RecSys' 2010]
  - A Matrix Factorization Technique with Trust Propagation for Recommendation in Social Networks
  - [Yang et al, WWW' 2011]
  - Like like alike -- Joint friendship and interest propagation in social networks
- Influence
  - [Ma et al, RecSys' 2009]

Learning to Recommend with Trust and Distrust Relationships

## Representative work

- Homophily
  - [Ma et al, SIGIR' 2009]
    - Learning to Recommend with Social Trust Ensemble
  - [Jamali & Ester et al, RecSys' 2010]
  - A Matrix Factorization Technique with Trust Propagation for Recommendation in Social Networks
  - [Yang et al, WWW' 2011]
    - Like like alike -- Joint friendship and interest propagation in social networks
- Influence
  - [Ma et al, RecSys' 2009]

Learning to Recommend with Trust and Distrust Relationships

• Trust graph + rating matrix



Figure 1: Example for Trust based Recommendation

Users makes decisions by:
 <u>either</u> following her own taste

$$p(R|U, V, \sigma_R^2) = \prod_{i=1}^m \prod_{j=1}^n \left[ \mathcal{N}\left(R_{ij}|g(U_i^T V_j), \sigma_R^2\right) \right]^{I_{ij}^R}$$
$$p(U|\sigma_U^2) = \prod_{i=1}^m \mathcal{N}(U_i|0, \sigma_U^2 \mathbf{I}), \ p(V|\sigma_V^2) = \prod_{j=1}^n \mathcal{N}(V_j|0, \sigma_V^2 \mathbf{I})$$



- Users makes decisions by:
  - *either* following her own taste
  - <u>or</u> learning from people she trusts

$$\widehat{R}_{ik} = \sum_{j \in \mathcal{T}(i)} R_{jk} S_{ij} = \sum_{k \in \mathcal{T}(i)} S_{ik} U_k^T V_j$$



- Users makes decisions by:
  - either following her own taste
  - <u>or</u> learning from people she trusts



$$R_{ij} = \alpha U_i^T V_j + (1 - \alpha) \sum_{k \in \mathcal{T}(i)} S_{ik} U_k^T V_j)$$

#### • Experiments

#### Epinion data: a trust network + a rating matrix

Table 1: Statistics of User-Item Rating Matrix of Epinions

| Statistics           | User  | Item |
|----------------------|-------|------|
| Max. Num. of Ratings | 1960  | 7082 |
| Avg. Num. of Ratings | 12.21 | 7.56 |

 Table 2: Statistics of Social Trust Network of Epinions

| Statistics | Trust per User | Be Trusted per User |
|------------|----------------|---------------------|
| Max. Num.  | 1763           | 2443                |
| Avg. Num.  | 9.91           | 9.91                |

## • Experiments

- Epinion data: a trust network + a rating matrix
- Metrics: <u>RMSE, MAE</u> for rating prediction
- Comparison: PMF, trust-only, trust ensemble

#### • Experiments

#### - Results

| Training Data | Metrics | Dimensionality $= 5$ |        |        | I      | Dimension | nality = 1 | 10     |        |
|---------------|---------|----------------------|--------|--------|--------|-----------|------------|--------|--------|
| Training Data | WIEthts | Trust                | PMF    | SoRec  | RSTE   | Trust     | PMF        | SoRec  | RSTE   |
| 00%           | MAE     | 0.9054               | 0.8676 | 0.8442 | 0.8377 | 0.9039    | 0.8651     | 0.8404 | 0.8367 |
| 3070          | RMSE    | 1.1959               | 1.1575 | 1.1333 | 1.1109 | 1.1917    | 1.1544     | 1.1293 | 1.1094 |
| 80%           | MAE     | 0.9221               | 0.8951 | 0.8638 | 0.8594 | 0.9215    | 0.8886     | 0.8580 | 0.8537 |
| 0070          | RMSE    | 1.2140               | 1.1826 | 1.1530 | 1.1346 | 1.2132    | 1.1760     | 1.1492 | 1.1256 |



## Representative work

## Homophily

- [Ma et al, SIGIR' 2009]

Learning to Recommend with Social Trust Ensemble

- [Jamali & Ester et al, RecSys' 2010]
  - A Matrix Factorization Technique with Trust Propagation for Recommendation in Social Networks
- [Yang et al, WWW' 2011]

Like like alike -- Joint friendship and interest propagation in social networks

- Influence
  - [Ma et al, RecSys' 2009]

Learning to Recommend with Trust and Distrust Relationships

# MF with trust propagation ... [Jamali & Ester RecSys' 2010]



# MF with trust propagation ... [Jamali & Ester RecSys' 2010]

## • Experiments

#### - Results on Epinion and Flixster

| Method   | K=5   | K=10  |
|----------|-------|-------|
| CF       | 1.180 | 1.180 |
| BaseMF   | 1.175 | 1.195 |
| STE      | 1.145 | 1.150 |
| SocialMF | 1.075 | 1.085 |

| Method   | K=5   | K=10  |
|----------|-------|-------|
| CF       | 0.911 | 0.911 |
| BaseMF   | 0.878 | 0.863 |
| STE      | 0.864 | 0.852 |
| SocialMF | 0.821 | 0.815 |

| Method   | Epinions | Flixster |
|----------|----------|----------|
| CF       | 1.361    | 1.228    |
| BaseMF   | 1.352    | 1.213    |
| STE      | 1.295    | 1.152    |
| SocialMF | 1.159    | 1.057    |

RMSE values on cold start users (K=5).

## Representative work

## • Homophily

- [Ma et al, SIGIR' 2009]

Learning to Recommend with Social Trust Ensemble

- [Jamali & Ester et al, RecSys' 2010]
  - A Matrix Factorization Technique with Trust Propagation for Recommendation in Social Networks
- [Yang et al, WWW' 2011]

Like like alike -- Joint friendship and interest propagation in social networks

- Influence
  - [Ma et al, RecSys' 2009]

Learning to Recommend with Trust and Distrust Relationships

## Like like alike ... [Yang et al WWW' 2011]

• Tie strength



## Like like alike ... [Yang et al WWW' 2011]

• <u>Social network</u> = <u>friend network</u> + <u>interest network</u>



- □ service item
- user
- friendship
- --- interest

users connect to their friends

users interact with service items (applications, ads, games, movies,...)

- Friendship Propagation connecting people to *real friends* 
  - boost traffic & user population, make the social graph denser ...
- Interest Propagation

targeting services to people interested

boost revenue, increase user participation, make the interest graph denser ...

These two tasks are usually addressed <u>separately with different</u> <u>methodologies</u>.

# Homophily:

## • The social effect:

- People connected to each other tend to have similar interest;
- People with similar interest are more likely to be friends.

## • Hints:

#### Freindship and interest evidences are

- highly correlated (Y! pulse: higher interest-correlation between connected users)
- mutually reinforcing if modeled jointly

# Friendship and interest should be propagated jointly!

# Friendship-Interest Propagation (FIP)

Exploit *Homophily* to established an *integrated network* for *joint* propagation of <u>friendship</u> and <u>interest</u>.



- service item
- user
- friendship
- --- interest

## The FIP Model

 $\phi_i \sim p(\phi_i | x_i)$  $\phi_j \sim p(\phi_j | x_j)$ 

• Modeling interests: collaborative filtering

*i*: user *j*: item *y*: interest indication φ: latent profiles *x<sub>i</sub>*: user features (age, gender, income) *x<sub>i</sub>*: item features (words, visual features)

 $y_{ij} \sim p(y_{ij} | \phi_i, \phi_j, x_i, x_j, \Theta)$ 

## The FIP Model

• Modeling friendship: latent-factor-based random walk

$$\phi_i \sim p(\phi_i | x_i)$$
$$s_{ii'} \sim p(s_{ii'} | \phi_i, \phi_j, x_i, x_j, \Theta)$$

*i*, *i*': user

- s: friendship connection
- $\varphi$ : latent profiles
- $x_i$ : user features (age, gender, income)

## The FIP Model



- *i*: user
- *j*: item
- y: interest indication
- s: friendship connection
- φ: latent profiles
- $x_i$ : user features (age, gender, income)
- $x_i$ : item features (words, visual features)

| The Friendship-Interest Propagation (FIP) model. |                                                                    |  |  |  |  |
|--------------------------------------------------|--------------------------------------------------------------------|--|--|--|--|
| $\forall \ i \in \mathcal{I}$                    | $\phi_i \sim p(\phi_i   x_i, \Theta)$                              |  |  |  |  |
| $\forall \ j \in \mathcal{J}$                    | $\phi_j \sim p(\phi_j   x_j, \Theta)$                              |  |  |  |  |
| $\forall \ i \in \mathcal{I}, j \in \mathcal{J}$ | $y_{ij} \sim p(y_{ij}   \phi_i, \phi_j, x_i, x_j, \Theta)$         |  |  |  |  |
| $orall \ i,i' \in \mathcal{I}$                  | $s_{ii'} \sim p(s_{ii'}   \phi_i, \phi_{i'}, x_i, x_{i'}, \Theta)$ |  |  |  |  |

## The FIP model

• Model specification:

$$\phi_{i} = Ax_{i} + \epsilon_{i} \qquad \phi_{j} = Bx_{j} + \epsilon_{j}$$
  

$$y_{ij} \sim p(y_{ij}|f_{ij}) \text{ where } f_{ij} = \phi_{i}^{\top}\phi_{j} + x_{i}^{\top}Wx_{j}$$
  

$$s_{ii'} \sim p(s_{ii'}|h_{ii'}) \text{ where } h_{ii'} = \phi_{i}^{\top}\phi_{i'} + x_{i}^{\top}Mx_{i'}$$

# Optimization

• Overall objective:

$$\begin{split} \min \lambda_{y} \sum_{i,j \in \mathcal{O}_{ij}} \ell(y_{ij}, f_{ij}) + \lambda_{s} \sum_{(i,i') \in \mathcal{O}_{i,i'}} \ell(s_{ii'}, h_{ii'}) & \text{Dyadic factorization} \\ &+ \lambda_{\mathcal{I}} \sum_{i} \gamma(\phi_{i} | x_{i}) + \lambda_{\mathcal{J}} \sum_{j} \gamma(\phi_{j} | x_{j}) & \text{Content factorization} \\ &+ \lambda_{W} \Omega[W] + \lambda_{M} \Omega[M] + \lambda_{A} \Omega[A] + \lambda_{B} \Omega[B], & \text{Regularization} \end{split}$$

## Optimization

Loss functions



Figure 3: Least mean squares  $(\ell_2)$ , logistic  $(\log)$ , Langford-Huber (Huber) and  $\Psi$ -loss (Psi). We use these four and the lazy  $\ell_2$  (omitted since its shape in parameter space is essentially identical to  $\ell_2$ ) loss for binary classification.

- Regularizer
  - -L2, L1, Ky-Fan, etc

## **Bias Correction**

## Bias Correction

- Observations (for both interest and friendship) are sparse with exclusively positive interactions
- Absence of negatives leads to inevitable overfitting, e.g., all the incoming dyadic interactions are predicted *positive*
- Selection bias correction: treat missing observations as very-weak negative observations:

For every positive observation, e.g.  $y_{ij} = 1$ , we randomly sample a handful set of missing (unobserved) entries  $\{y_{ij'}\}_{j'=1:m}$ and treat them as negative examples (e.g.  $y_{ij'} = -1$ ,) with credibility 1/m each. Since the sampling procedure is random during the SGD process, the set of pseudo-negatives changes at each iteration and consequently each missing entry is treated as a potentially *very weak* negative instance.

## Experiments

## Data

- A subset of Yahoo! Pulse data.
- 1.2M users, 386 items
- 6.1M friend connections
- 29M interest indications



| New User? Register   Sign In   Help | Make Y! My Homepage                           | Σ |
|-------------------------------------|-----------------------------------------------|---|
| YAHOO! PULSE                        | Q Search                                      |   |
| Sign In Find People                 |                                               |   |
| Share what's important to you       |                                               |   |
| All Conny Lee<br>Happy Friday!      | ith the people you care<br>ut<br>worite sites |   |

Figure 4: Degree distributions of Yahoo! Pulse friendship (top) and interest (bottom) networks.

## • Interest propagation [in terms of service recommendation]

Table 1: Service recommendation performance.

| Models          | loss          | $\Omega[\cdot]$ | AP@5  | AR@5  | nDCG@5 |
|-----------------|---------------|-----------------|-------|-------|--------|
| $\mathbf{SIM}$  |               |                 | 0.630 | 0.186 | 0.698  |
| $\mathbf{RLFM}$ |               |                 | 0.729 | 0.211 | 0.737  |
| NLFM            |               |                 | 0.748 | 0.222 | 0.761  |
| FIP             | $\ell_2$      | $\ell_2$        | 0.768 | 0.228 | 0.774  |
| $\mathbf{FIP}$  | lazy $\ell_2$ | $\ell_2$        | 0.781 | 0.232 | 0.790  |
| FIP             | $\log$ istic  | $\ell_2$        | 0.781 | 0.232 | 0.793  |
| FIP             | Huber         | $\ell_2$        | 0.781 | 0.232 | 0.794  |
| FIP             | $\Psi$        | $\ell_2$        | 0.777 | 0.231 | 0.771  |
| FIP             | $\ell_2$      | $\ell_1$        | 0.778 | 0.231 | 0.787  |
| FIP             | lazy $\ell_2$ | $\ell_1$        | 0.780 | 0.231 | 0.791  |
| FIP             | $\log$ istic  | $\ell_1$        | 0.779 | 0.231 | 0.792  |
| FIP             | Huber         | $\ell_1$        | 0.786 | 0.233 | 0.797  |
| $\mathbf{FIP}$  | $\Psi$        | $\ell_1$        | 0.765 | 0.215 | 0.772  |

#### • Friendship Propagation [in terms of friend suggestion]

| Models         | loss          | $\Omega[\cdot]$ | AP@5  | AR@5  | nDCG@5 |
|----------------|---------------|-----------------|-------|-------|--------|
| RLFM           |               |                 | 0.164 | 0.202 | 0.174  |
| FIP            | $\ell_2$      | $\ell_2$        | 0.359 | 0.284 | 0.244  |
| $\mathbf{FIP}$ | lazy $\ell_2$ | $\ell_2$        | 0.193 | 0.269 | 0.200  |
| $\mathbf{FIP}$ | $\log$ istic  | $\ell_2$        | 0.174 | 0.220 | 0.189  |
| $\mathbf{FIP}$ | Huber         | $\ell_2$        | 0.210 | 0.234 | 0.215  |
| FIP            | $\Psi$        | $\ell_2$        | 0.187 | 0.255 | 0.185  |
| FIP            | $\ell_2$      | $\ell_1$        | 0.186 | 0.230 | 0.214  |
| $\mathbf{FIP}$ | lazy $\ell_2$ | $\ell_1$        | 0.180 | 0.223 | 0.194  |
| $\mathbf{FIP}$ | logistic      | $\ell_1$        | 0.183 | 0.217 | 0.189  |
| $\mathbf{FIP}$ | Huber         | $\ell_1$        | 0.188 | 0.222 | 0.200  |
| FIP            | $\Psi$        | $\ell_1$        | 0.178 | 0.208 | 0.179  |

Table 2: Friendship prediction performance.

## **Experiments**

Bias correction



Figure 7: Recommendation performance in terms of nDCG@5 with and without bias-correction (BC) when applied to service recommendation (left) and friendship prediction (right).

## Representative work

## Homophily

- [Ma et al, SIGIR' 2009]

Learning to Recommend with Social Trust Ensemble

- [Jamali & Ester et al, RecSys' 2010]
  - A Matrix Factorization Technique with Trust Propagation for Recommendation in Social Networks
- [Yang et al, WWW' 2011]

Like like alike -- Joint friendship and interest propagation in social networks

- Influence
  - [Ma et al, RecSys' 2009]

Learning to Recommend with Trust and Distrust Relationships

• Trust graph + distrust graph + rating matrix



matrix factorization

$$\min_{U,V} \mathcal{L}(R, U, V) = \frac{1}{2} \sum_{i=1}^{m} \sum_{j=1}^{n} I_{ij}^{R} (R_{ij} - g(U_{i}^{T} V_{j}))^{2} + \frac{\lambda_{U}}{2} \|U\|_{F}^{2} + \frac{\lambda_{V}}{2} \|V\|_{F}^{2},$$

matrix factorization + trust regularization

$$\min_{U,V} \mathcal{L}(R, U, V) = \frac{1}{2} \sum_{i=1}^{m} \sum_{j=1}^{n} I_{ij}^{R} (R_{ij} - g(U_i^T V_j))^2 + \frac{\lambda_U}{2} \|U\|_F^2 + \frac{\lambda_V}{2} \|V\|_F^2, + \frac{\alpha}{2} \sum_{i=1}^{m} \sum_{t \in \mathcal{T}^+(i)} (S_{it}^{\mathcal{T}} \|U_i - U_t\|_F^2)$$

if user  $u_i$  trusts user  $u_t$ ,  $U_i$  and  $U_d$  should be close to each other

matrix factorization + distrust regularization

$$\min_{U,V} \mathcal{L}(R, U, V) = \frac{1}{2} \sum_{i=1}^{m} \sum_{j=1}^{n} I_{ij}^{R} (R_{ij} - g(U_i^T V_j))^2 + \frac{\lambda_U}{2} ||U||_F^2 + \frac{\lambda_V}{2} ||V||_F^2, + \frac{\beta}{2} \sum_{i=1}^{m} \sum_{d \in \mathcal{D}^+(i)} (-S_{id}^{\mathcal{D}} ||U_i - U_d||_F^2)$$

if user  $u_i$  distrusts user  $u_d$ , then  $U_i$  and  $U_d$  will have a large distance

### • Experiments

– Epinion: a trust network + a distrust network + a rating matrix

 Table 1: Statistics of User-Item Rating Matrix of

 Epinions

| Statistics           | User   | Item  |
|----------------------|--------|-------|
| Min. Num. of Ratings | 1      | 1     |
| Max. Num. of Ratings | 162169 | 1179  |
| Avg. Num. of Ratings | 102.07 | 17.79 |

Table 2: Statistics of Trust Network of Epinions

| Statistics | Trust per User | Be Trusted per User |
|------------|----------------|---------------------|
| Max. Num.  | 2070           | 3338                |
| Avg. Num.  | 5.45           | 5.45                |

Table 3: Statistics of Distrust Network of Epinions

| Statistics | Distrust per User | Be Distrusted per User |
|------------|-------------------|------------------------|
| Max. Num.  | 1562              | 540                    |
| Avg. Num.  | 0.94              | 0.94                   |

## • Experiments

- Epinion data: a trust network + a rating matrix
- Metrics: <u>RMSE</u> for rating prediction
- Comparison: PMF, trust-reg, distrust-reg

- Experiments
  - Results

| Dataset  | Traning Data | Dimensionality | $\mathbf{PMF}$ | SoRec | RWD   | RWT   |
|----------|--------------|----------------|----------------|-------|-------|-------|
| Epinions | 5%           | $5\mathrm{D}$  | 1.228          | 1.199 | 1.186 | 1.177 |
|          |              | 10D            | 1.214          | 1.198 | 1.185 | 1.176 |
|          | 10%          | $5\mathrm{D}$  | 0.990          | 0.944 | 0.932 | 0.924 |
|          |              | 10D            | 0.977          | 0.941 | 0.931 | 0.923 |
|          | 20%          | $5\mathrm{D}$  | 0.819          | 0.788 | 0.723 | 0.721 |
|          |              | 10D            | 0.818          | 0.787 | 0.723 | 0.720 |



