Collaborative Filtering on a Budget

Alexandors Karatzoglou, Alex Smola, Markus Weimer

Outline

- 1. Main contribution
- 2. Algorithm details
- 3. Hashing
- 4. Modified algorithm with Hashing
- 5. Results

Main contribution

Use hashing so that required memory is *independent* of number of users and number of user/item features.

Notation

- Let Y be the rating matrix. Y_{ij} is the rating of the *i*th user for the *j*th item.
- Let F be the matrix of the predicted ratings.
- Then- $F_{ij} = \langle U_i, M_j \rangle$ and $U_i, M_j \in \mathbb{R}^d$

Regularization

- Standard: $\Omega[U, M] = \frac{1}{2} \left[||U||_{Frob}^2 + ||M||_{Frob}^2 \right]$
- Proposed: $\Omega[U, M] = \frac{1}{2} \left[\sum_{i} n_i . ||U_i||^2 + \sum_{j} m_j . ||M_j||^2 \right]$
- Minimize: $R[U, M] = L[UM^T, Y] + \lambda \Omega[U, M]$

 n_i and m_j are scaling factors that depend on the number of ratings

The algorithm

Algorithm 1 Matrix Factorization

Input *Y*, *d* Initialize $U \in \mathbb{R}^{n \times d}$ and $M \in \mathbb{R}^{m \times d}$ with small random values. Set $t = t_0$ **while** (i, j) in observations *Y* **do** $\eta \longleftarrow \frac{1}{\sqrt{t}}$ and $t \longleftarrow t + 1$ $F_{ij} := \langle U_i, M_j \rangle$ $U_i \longleftarrow (1 - \eta \lambda) U_i - \eta M_j \partial_{F_{ij}} l(F_{ij}, Y_{ij})$ $M_j \longleftarrow (1 - \eta \lambda) M_j - \eta U_i \partial_{F_{ij}} l(F_{ij}, Y_{ij})$ **end while Output** *U*, *M*

Works only when a small number of matrix values are significant

Rademacher function

• Also known as the square wave function! Looks like:

SQUARE WAVE

Hashing:

$$\begin{split} u_i &:= \sum_{(j,k):h(j,k)=i} U_{jk} \sigma(j,k) \text{ and} \\ m_i &:= \sum_{(j,k):h'(j,k)=i} M_{jk} \sigma'(j,k) \end{split}$$

Reconstruction:

$$\tilde{U}_{ij} := u_{h(i,j)}\sigma(i,j)$$
 and $\tilde{M}_{ij} := m_{h'(i,j)}\sigma'(i,j)$.

This allows us to reconstruct ${\cal F}_{ij}$ via

$$\tilde{F}_{ik} = \sum_{j} u_{h(i,j)} m_{h'(k,j)} \sigma(i,j) \sigma'(k,j).$$

Modified algorithm with hashing

Algorithm 2 Compressed Matrix Factorization Input Y, Initialize $w \in \mathbb{R}^N$ with small random values. Set $t = t_0$ while (i, k) in observations Y do $\eta \leftarrow \frac{1}{\sqrt{t}}$ and $t \leftarrow t+1$ $F_{ik} := \sum_j \sigma(i, j)\sigma'(k, j)w_{h(i,j)}w_{h'(k,j)}$ $\gamma := \eta \partial_{F_{ik}} l(F_{ik}, Y_{ik})$ $\mu := (1 - \eta \lambda)$ for j = 1 to d do $w_{h(i,j)} \leftarrow \mu w_{h(i,j)} - \gamma \sigma(i, j)\sigma'(k, j)w_{h'(k,j)}$ $w_{h'(k,j)} \leftarrow \mu w_{h'(k,j)} - \gamma \sigma(k, j)'\sigma(i, j)w_{h(i,j)}$ end for end while Output w

Results

Squared	ϵ -insensitive	Huber
	MovieLens	
0.857 ± 0.006	0.859 ± 0.004	0.857 ± 0.004
	EachMovie	
1.177 ± 0.003	1.161 ± 0.007	1.180 ± 0.005

Thank You!