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Empirical Observation

» Different recommendation systems perform
netter than others for some users or items,
out not for others.

» Example: 095
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Ensemble Model

» Weights in the combination should be
functions of inputs, rather than constants.
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» Example of features.

- Rating count for a user
- Standard deviation of an item




Inducing Local Features

» Assumption: Similar users/items share well-
performing CF method on them as well.

» Step 1: Randomly select an anchor user and
an anchor item.

» Step 2: Apply kernel smoothing, e.g,

(’ d ¥ .

K}S()H*rz.*)(u,f) o \1 - (uh, M)) [(d(u*,u) <h)
(1 - d(";’ ")) I(d(i*,i) <)

(2)
Kh,(u*,f*)

p—

(u,1) o




Stagewise Learning

» Greedy stagewise learning with least squares.
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» Sampling is needed as |H| is very big.
» Surprisingly, randomly-chosen small number
of features actually works quite well!




Experiment
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